NEWS お知らせ

過去のお知らせ

  • 東日本高速道路株式会社 (NEXCO東日本) との共同研究成果が英語論文誌に採択されました!

    対照学習を導入したマルチモーダル深層学習に関する研究成果が国際論文誌Sensors (Impact Factor 3.847)に採択されました.Takaaki Higashi, Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of Degradation Degree in Road Infrastructure Based on Multi-modal ABN Using Contrastive Learning,” Sensors, 2022 (Accepted for publication).

    https://l.facebook.com/l.php?u=https%3A%2F%2Fwww.mdpi.com%2Fjournal%2Fsensors&h=AT1_T4uGDnag3rBRq6FHVw4uxDo0LfJPk4T-DnwXsQY3PMTmumoYjJtKZoJHcPgxOi2zju_pp3mSnG66WOGBAX4FxEES44-wlt8t_EpDY_QCoX0jgKTCjcF3m35g9NJTVo1rJGCPSIFQ&__tn__=H-R&c[0]=AT3TDui7WvsktqCq0LEMZR9msLiYKHNjcZnlGX0XDczrrZxEkPek8gYf97kWN6HeFimNFFlmxmsIXag9VHn_ncywn7OAuZtMhkRZq0q0qOWGGYaaN4ut94pVvX1CZYgrZmxpbbHa5A_hPfa-qMzl8VrWoABRZ-s9GK6mptoMU3G4RZwZLErfV9REM2TuGlW-GW1wWCYu7UAjaHsOA3uyzeA5PfnZQT8a98vo

  • 当研究室の修士課程学生がThe 2022 IEEE Sapporo Section Student Paper Contest Encouraging Prizeを受賞しました。

    “A Study on Non-reference Image Quality Assessment Considering Phaseless Components of Neural Radiance Fields”の発表に関する受賞です。おめでとうございます!

    2人、立っている人、室内の画像のようです
    受賞者と教授の写真
  • 研究室の3名が受賞しました!

    当研究室の博士課程学生および修士課程学生2名がThe 2022 IEEE Sapporo Section Encouragement Awardを受賞しました。

    本賞は、以下の論文に授与されています。おめでとうございます!

    1. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama: “Distress image retrieval for infrastructure maintenance via self-trained deep metric learning using experts’ knowledge”, IEEE Access, vol.9, pp.65234-65245 (2021)

    2. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama: “Feature integration through semi-supervised multimodal Gaussian process latent variable model with pseudo-labels for interest level estimation”, IEEE Access, vol.9, pp.163843-163850 (2021)

    3. Nao Nakagawa, Ren Togo, Takahiro Ogawa, Miki Haseyama: “Disentangled representation learning in real-world image datasets via image segmentation prior”, IEEE Access, vol.9, pp.110880-110888 (2021)

  • 英文書籍「Biomimetics Connecting Ecology and Engineering by Informatics」が出版されました!

    Taylor&Francisより、バイオミメティクスに関する英文書籍が出版されました。

    当研究室の長谷山教授、小川教授が「Chapter 3:Biomimetics Image Retrieval Platform for Bridging Different Study Fields」の執筆を担当しています。

    尚、本書籍の表紙は、当研究室の発想支援型画像検索システムImage Vortexのインタフェース画像が採用されています。

    https://www.taylorfrancis.com/books/edit/10.1201/9781003277170/biomimetics-akihiro-miyauchi-masatsugu-shimomura

  • 学術論文誌IEEE Accessに採択されました!

    当研究室より投稿していたクロスモーダル検索に関する研究成果がIEEE Accessに採択されました。

    Huaying Zhang, Rintaro Yanagi, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Cross-modal Image Retrieval Considering Semantic Relationships with Many-to-many Correspondence Loss,” IEEE Access, 2023. (Accepted)

    https://ieeeaccess.ieee.org/

  • ICLR2023 に採択されました!

    当研究室から投稿していた表現学習に関する研究成果がAI・機械学習分野のトップカンファレンスInternational Conference on Learning Representation (ICLR)に採択されました!
    Nao Nakagawa, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Gromov-Wasserstein Autoencoders,” ICLR, 2023. (Accepted)
    https://openreview.net/forum?id=sbS10BCtc7
    ※ICLRは,google scholar metricにおいて全学術分野の論文・会議において9位,人工知能分野において1位にランクされる世界最高峰の国際会議です.

  • Diversity learning based on multi-latent space for medical image visual question generation

    He Zhu, Ren Togo, Takahiro Ogawa, Miki Haseyama

    Sensors

  • Dataset distillation for medical dataset sharing

    Guang Li, Ren Togo, Takahiro Ogawa, Miki Haseyama

    The 37th AAAI Conference on Artificial Intelligence (AAAI-23) Workshop

  • Customer interest estimation method in real store using re-identification and 3D posture estimation models

    Teruhisa Yamashiro, Yuki Honma, Ren Togo, Takahiro Ogawa, Miki Haseyama

    International Workshop on Advanced Image Technology 2023 (IWAIT2023)

  • Rubber material retrieval system using electron microscope images for rubber material development

    Rintaro Yanagi, Ren Togo, Takahiro Ogawa, Miki Haseyama

    The 4th ACM International Conference on Multimedia in Asia (MM Asia 2022)

  • Affective embedding framework with semantic representations from tweets for zero-shot visual sentiment prediction

    Yingrui Ye, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama

    The 4th ACM International Conference on Multimedia in Asia (MM Asia 2022)

  • Disentangled image attribute editing in latent space via mask-based retention loss

    Shunya Ohaga, Ren Togo, Takahiro Ogawa, Miki Haseyama

    The 4th ACM International Conference on Multimedia in Asia (MM Asia 2022)

  • Popularity-aware graph social recommendation for fully non-interaction users

    Nozomu Onodera, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama

    The 4th ACM International Conference on Multimedia in Asia (MM Asia 2022)

  • 道路構造物の変状画像分類の高精度化に関する検討ー自己教師あり学習の導入による事前知識の活用ー

    東 孝明, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀

    第37回 信号処理シンポジウム

  • VQGに関する論文がSensorsに採択されました!

    Vision and Languageタスクにおいて,医用画像データに基づき多様な質問の生成を可能とする研究成果が国際論文誌Sensors (Impact Factor 3.847)に採択されました.

    He Zhu, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Diversity Learning Based on Multi-Latent Space for Medical ImageVisual Question Generation,” Sensors, 2022 (Accepted for publication).

    https://www.mdpi.com/journal/sensors

  • 第60回北海道高等学校教育研究大会において,当研究室の長谷山美紀教授が講演を行いました.

    2023年1月11日(水)にカナモトホールで開催された第60回北海道高等学校教育研究大会において,長谷山教授が以下の講演を行いました.『データサイエンス・AI教育 ~これからの北海道を考える~』

    http://d-kokyoken.jp/head/event/udd2tk0000007br7.html

  • IWAIT 2023にて成果発表を行い、Best Paper Awardを受賞しました!

    2023/1/9-1/10に韓国済州島にて開催された画像処理分野の国際会議International Workshop on Advanced Image Technology (IWAIT 2023)にて以下の論文発表をを行い、Best Paper Awardを受賞しました!尚、本研究成果は、株式会社ニトリホールディングスとの連携による研究成果となります。

    Teruhisa Yamashiro, Yuki Honma, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Customer Interest Estimation Method in Real Store Using Re-Identification and 3D Posture Estimation Models,” IWAIT, 2023.

    https://iwait.online/

  • 映像情報メディア学会 優秀研究発表賞を受賞しました!

    当研究室の下記の発表が、映像情報メディア学会 優秀研究発表賞を受賞しました!おめでとうございます!

    櫻井 慶悟, 藤後 廉, 小川 貴弘, 長谷山 美紀: “ユーザの嗜好を考慮した強化学習と知識グラフに基づく楽曲プレイリスト生成に関する検討”, 映像情報メディア学会技術報告, vol.46, no.6, pp.109-112 (2022)

  • 北大・日立協働教育研究支援プログラム発表会の様子が北大HPにて公開されました!

    先日行われた北大・日立協働教育研究支援プログラム発表会の様子が北大HPにて公開されました。当研究室博士後期課程1年の李広君が発表を行っております。本プログラムは、北海道大学と株式会社日立製作所の協働により、博士課程学生に対する経済的支援を通じて、教育の質、研究の向上を図り、我が国及び世界の発展に寄与することを目指したプログラムです。

    https://note.com/report_hokudai/n/n8f5eb24d802f

  • 学術論文誌IEEE Open Journal of Signal Processing (OJSP) に採択されました!

    当研究室より投稿していたクロスモーダル検索に関する研究成果がIEEE Open Journal of Signal Processingに採択されました。

    Rintaro Yanagi, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Recallable Question Answering-based Re-ranking Considering Semantic Region for Cross-modal Retrieval,” IEEE Open Journal of Signal Processing, 2023.

    https://signalprocessingsociety.org/publications-resources/ieee-open-journal-signal-processing