KEISUKE MAEDA 前田 圭介


北海道大学 創成研究機構 データ駆動型融合研究創発拠点 特任准教授
前田 圭介 Keisuke MAEDA

情報科学を軸とした異分野融合研究に従事.画像・テキスト・生体情報などの異種データを用いたマルチモーダル信号処理・機械学習とその応用に関する研究を推進.
IEEE,電子情報通信学会 会員.博士(情報科学)

E-mail: maeda {at} lmd.ist.hokudai.ac.jp

略歴 論文誌 国際会議 国内学会 講演 受賞 研究プロジェクト 学会活動

 

略歴

学歴

  • 平成27年3月 北海道大学 工学部 卒業
  • 平成29年3月 北海道大学大学院 情報科学研究科 修士課程 修了
  • 平成29年4月 北海道大学大学院 情報科学研究科 博士後期課程 入学
  • 平成31年3月 北海道大学大学院 情報科学研究科 博士後期課程 卒業(在学期間短縮)
  • 平成31年4月-令和2年2月 日本学術振興会 特別研究員 (PD)
  • 令和2年3月-令和4年3月 北海道大学 総合IR室 特任助教
  • 令和4年4月-令和6年1月 北海道大学 大学院情報科学研究院 メディアダイナミクス研究室 特任助教
  • 令和6年2月-現在 北海道大学 創成研究機構 データ駆動型融合研究創発拠点 特任准教授

研究業績

 

論文誌

  1. Keisuke Maeda, Masanao Matsumoto, Naoki Saito, Takahiro Ogawa, Miki Haseyama, “Multi-modal Gaussian process latent variable model with semi-supervised label dequantization,” IEEE Access, (Accepted for publication), 2024.
  2. Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Multimodal shot prediction based on spatial-temporal interaction between players in soccer videos”, Applied Sciences, vol.14, no.11:4847, pp.1-17, 2024. [paper]
  3. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, and Miki Haseyama, “Snow- or ice-covered road detection in winter road surface conditions using deep neural networks,” Computer-Aided Civil and Infrastructure Engineering, pp. 1-16, 2024. [paper]
  4. Yuya Moroto, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Multimodal transformer model using time-series data to classify winter road surface conditions”, Sensors, vol.24, no.11: 3440, pp.1-19, 2024. [paper]
  5. 李 広, 藤後 廉, 前田 圭介, 酒向 章哲, 山内 功, 早川 哲也, 中前 茂之, 小川 貴弘, 長谷山 美紀, “ブルーカーボンによるCO2吸収量推計へ向けた大規模セマンティックセグメンテーションモデルに基づく藻場領域の自動認識,” 土木学会論文集特集号(海岸工学), 2024.
  6. Guang Li, Ren Togo, Keisuke Maeda, Akinori Sako, Isao Yamauchi, Tetsuya Hayakawa, Shigeyuki Nakamae, Takahiro Ogawa, Miki Haseyama, “Algal bed region segmentation based on a ViT adapter using aerial images for estimating CO2 absorption capacity,” Remote Sensing, vol. 16, no. 10: 1742, 2024. [paper]
  7. Keisuke Maeda, Takahiro Ogawa, Tasuku Kayama, Takuya Sasaki, Kazuki Tainaka, Masaaki Murakami, Miki Haseyama, “Trial analysis of brain activity information for presymptomatic disease detection of rheumatoid arthritis,” Bioengineering, vol. 11, no. 6: 523, pp. 1-17, 2024. [paper]
  8. Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Analysis of continual learning techniques for image generative models with learned class information management,” Sensors, vol. 24, no. 10: 3087, pp. 1-18, 2024. [paper]
  9. Yuhu Feng, Jiahuan Zhang, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A novel frame selection metric for video inpainting to enhance urban feature extraction,” Sensors, vol. 24, no. 10, 3035, 2024. [paper]
  10. 吉田 将規,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”大規模言語モデルを用いた通報音声からの事象発生地点予測”, AI・データサイエンス論文集, vol. 5, no. 1, pp. 33-42, 2024. [paper]
  11. Zongyao Li, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Generalizing deep learning-based distress segmentation models for subway tunnel images by test-time training,” Intelligence, Informatics and Infrastructure, vol. 5, no. 1, pp. 34-41, 2024. [paper]
  12. 五箇 亮太,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”Spatial-temporal attentionを導入した再帰型ニューラルネットワークに基づく重機との接触事故リスクの推定”, AI・データサイエンス論文集, vol. 5, no. 1, pp. 117-125, 2024. [paper]
  13. 清野 竜生,斉藤 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”地下鉄トンネル点検における技術者のモーションデータを用いたGraph Convolutional Networkに基づく説明可能な熟練度分類”, AI・データサイエンス論文集, vol. 5, no. 1, pp. 101-109, 2024. [paper]
  14. 大羽賀 駿也,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”工事現場の定点カメラを用いた物体検出および姿勢推定に基づくZero-shot高リスク状況検出”, AI・データサイエンス論文集, vol. 5, no. 1, pp. 110-116, 2024. [paper]
  15. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Text-guided image editing based on post score for gaining attention on social media,” Sensors, vol. 24, no. 3: 921, pp. 1-17, 2024. [paper]
  16. Nozomu Onodera, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Individual persistence adaptation for user-centric evaluation of user satisfaction in recommender systems,” IEEE Access, vol. 12, pp. 23626-23635, 2024. [paper]
  17. Yuto Watanabe, Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Automatic findings generation for distress images using in-context few-shot learning of visual language model based on image similarity and text diversity,” Journal of Robotics and Mechatronics, vol. 36, no. 2, pp. 353-364, 2024. [paper]
  18. Hiroki Okamura, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Flexibly manipulating popularity bias for tackling trade-offs in recommendation,” Information Processing & Management, vol. 61, no. 2: 103606, pp. 1-15, 2024. [paper]
  19. Yuya Moroto, Yingrui Ye, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Zero-shot visual sentiment prediction via cross-domain knowledge distillation,” IEEE Open Journal of Signal Processing, vol. 5, pp. 177-185, 2023. [paper]
  20. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “TolerantGAN: Text-guided image manipulation tolerant to real-world image,” IEEE Open Journal of Signal Processing, vol. 5, pp. 150-159, 2023. [paper]
  21. Yaozong Gan, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Zero-shot traffic sign recognition based on mid-level feature matching,” Sensors, vol. 23, no. 23: 9607, pp. 1-18, 2023. [paper]
  22. 前田 圭介,小川 貴弘,長谷山 美紀,”社会インフラ維持管理効率化に向けた最先端AI研究”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 982-989, 2023. [paper]
  23. 渡邉 優宇人,小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”Visual language modelを用いた変状画像に対する所見の自動生成-類似画像検索によるFew-shot learningの導入-”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 223-232, 2023. [paper]
  24. 山本 一輝,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”変状の劣化レベル判定支援に向けたグラフニューラルネットワークによるレコードデータの特徴表現の獲得”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 694-704, 2023. [paper]
  25. 櫻井 慶悟,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”地下鉄トンネル点検技術者の新規変状の発見率向上に向けた一人称視点映像からの変状検出”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 393-401, 2023. [paper]
  26. 小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”セマンティックセグメンテーションに基づく道路走行中の車載映像を用いた枯損木の検出”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 686-693, 2023. [paper]
  27. 小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”社会インフラ点検時の変状画像を対象とした変状種と劣化レベルのマルチタスク分類”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 807-814, 2023. [paper]
  28. 渡部 航史,小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”Attention-based Multiple Instance Learningに基づく背景の多様性に頑健な道路附属物の異状判定”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 482-489, 2023. [paper]
  29. 諸戸 祐哉,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”時系列データを用いたMulti-modal Transformerに基づく冬期路面状態の分類”, AI・データサイエンス論文集, vol. 4, no. 3, pp. 402-413, 2023. [paper]
  30. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Manipulation direction: Evaluating text-guided image manipulation based on similarity between changes of image and text modalities,” Sensors, vol. 23, no. 22: 9287, pp. 1-18, 2023. [paper]
  31. Rintaro Yanagi, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Material compound-property retrieval using electron microscope images for rubber material development,” IEEE Access, vol. 11, pp. 88258-99264, 2023. [paper]
  32. Yusuke Akamatsu, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Zero-shot neural decoding with semi-supervised multi-view embedding,” Sensors, vol. 23, no. 15: 6903, pp. 1-19, 2023. [paper]
  33. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Gaussian process decoder with spectral mixtures and locally estimated manifold for data visualization,” Applied Sciences, vol. 13, no. 14: 8018, pp. 1-16, 2023. [paper]
  34. Naoki Saito, Keisuke Maeda, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Visual emotion recognition through multimodal cyclic-label dequantized Gaussian process latent variable model,” Journal of Robotics and Mechatronics, vol. 35, no. 5, pp. 1321-1330, 2023. [paper]
  35. Ziwen Lan, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Multi-label classification in anime illustration based on hierarchical attribute relationships,” Sensors, vol. 23, no. 10: 4798, pp. 1-19, 2023. [paper]
  36. Yuhu Feng, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Gaze-dependent image re-ranking technique for enhancing content-based image retrieval,” Applied Sciences, vol. 13, no. 10: 5948, pp. 1-17, 2023. [paper]
  37. Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Prediction of shooting events in soccer videos using complete bipartite graphs and players’ spatial-temporal relations,” Sensors, vol. 23, no. 9: 4506, pp. 1-19, 2023. [paper]
  38. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Text-guided Image manipulation via generative adversarial network with referring image segmentation-based guidance,” IEEE Access, vol. 11, pp. 42534-42545, 2023. [paper]
  39. 東孝明,小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”データ横断型対照学習を用いた道路構造物における変状画像の劣化レベル分類”, AI・データサイエンス論文集, vol. 4, no. 2, pp. 44-57, 2023. [paper]
  40. Zongyao Li,Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama,”Developing technologies for the practical application of deep learning-based distress segmentation in subway tunnel images”, AI・データサイエンス論文集, vol. 4, no. 1, pp. 1-8, 2023. [paper]
  41. Ziwen Lan, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Hierarchical multi-label attribute classification with graph convolutional networks on anime illustration,” IEEE Access, vol. 11, pp. 35447-35456, 2023. [paper]
  42. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “SpectralMAP: Approximating data manifold with spectral decomposition,” IEEE Access, vol. 11, pp. 31530-31540, 2023. [paper]
  43. Takaaki Higashi, Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, ”Estimation of degradation degree in road infrastructure based on multi-modal ABN using contrastive learning,” Sensors, vol. 23, no. 3: 1657, pp. 1-22, 2023. [paper]
  44. 斉藤 直輝, 前田 圭介, 小川 貴弘, 浅水 仁, 長谷山 美紀, “画像の感情推定のためのラベル逆量子化を導入した正準相関分析,” 電子情報通信学会和文論文誌D, vol. 106, no. 5, pp. 337-348, 2023. [paper]
  45. Keisuke Maeda, Ren Togo, Takahiro Ogawa, Shin-ichi Adachi, Fumiaki Yoshizawa, Miki Haseyama, “Trial analysis of relationship between taste and biological information obtained while eating strawberries for sensory evaluation,” Sensors, vol. 22, no. 23: 9496, pp. 1-18, 2022. [paper]
  46. Keisuke Maeda, Saya Takada, Tomoki Haruyama, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Distress detection in subway tunnel images via data augmentation based on selective image cropping and patching,” Sensors, vol. 22, no. 22: 8932, pp. 1-15, 2022. [paper]
  47. 諸戸 祐哉,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”テキストおよび画像情報に基づくFocal Lossを導入した深層学習による冬期路面状態の分類,” AI・データサイエンス論文集, vol. 3, no. J2, pp. 293-306, 2022. [paper]
  48. 小川 直輝,前田 圭介,小川 貴弘,長谷山 美紀,”異種特徴間の相関および Attention Mapの確信度を考慮可能な変状画像の劣化レベル分類,” AI・データサイエンス論文集, vol. 3, no. J2, pp. 704-713, 2022. [paper]
  49. 上川 恭平,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”インフラ施設の変状の評価を支援する効率的な映像提示に向けた技術者の点検動作分類,” AI・データサイエンス論文集, vol. 3, no. J2, pp. 811-818, 2022. [paper]
  50. 櫻井 慶悟,前田 圭介,藤後 廉,小川 貴弘,長谷山 美紀,”地下鉄トンネル点検時の一人称視点映像を用いたVision Transformerに基づく変状検出,” AI・データサイエンス論文集, vol. 3, no. J2, pp. 470-478, 2022. [paper]
  51. Takaaki Higashi, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, ”Multiple subjects’ brain decoding for estimating visual information based on probabilistic generative model,” Sensors, vol. 22, no. 16: 6148, pp. 1-18, 2022. [paper]
  52. Jiahuan. Zhang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, ”Regularization meets enhanced multi-stage fusion features: making CNN more robust against white-box adversarial attacks,” Sensors, vol. 22, no. 14: 5431, pp.1-20, 2022. [paper]
  53. Yun Liang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, ”Chain center loss: A psychology inspired loss function for image sentiment analysis,” Neurocomputing, vol. 495, no. 21, pp. 118-128, 2022. [paper]
  54. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, ”Time-lag aware latent variable model for prediction of important scenes using baseball videos and tweets,” Sensors, vol. 22, no. 7: 2065, pp.1-11, 2022. [paper]
  55. Taisei Hirakawa, Keisuke Maeda, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Refining graph representation for cross-domain recommendation based on edge pruning in latent space,” IEEE Access, vol. 10, pp. 12503-12509, 2022. [paper]
  56. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Deterioration level estimation based on convolutional neural network using confidence-aware attention mechanism for infrastructure inspection,” Sensors, vol. 22, no. 1: 382, pp. 1-16, 2022. [paper]
  57. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Feature integration through semi-supervised multimodal Gaussian process latent variable model with pseudo-labels for interest level estimation,” IEEE Access, vol. 9, pp. 163843-163850, 2021. [paper]
  58. Keisuke Maeda, Naoki Ogawa, Takahiro Ogawa, Miki Haseyama, “Reliable estimation of deterioration levels via late fusion using multi-view distress images for practical inspection,” Journal of Imaging, vol. 7, no. 12: 273, pp. 1-17, 2021. [paper]
  59. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Detection of important scenes in baseball videos via bidirectional time lag aware deep multiset canonical correlation analysis,” IEEE Access, vol. 9, pp. 84971-84981, 2021.  [paper]
  60. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Distress image retrieval for infrastructure maintenance via self-trained deep metric learning using experts’ knowledge,” IEEE Access, vol. 9, pp. 65234-65245, 2021.  [paper]
  61. Ren Togo, Naoki Saito, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Rubber material property prediction using electron microscope images,” Sensors, vol. 21, no. 6: 2088, pp. 1-13, 2021.  [paper]
  62. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Detection of important scenes in baseball videos via time-lag aware multimodal variational autoencoder,” Sensors, vol. 21, no. 6: 2045, pp. 1-11, 2021.  [paper]
  63. Masanao Matsumoto, Naoki Saito, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Supervised fractional-order embedding multiview canonical correlation analysis via ordinal label dequantization for image interest estimation,” IEEE Access, vol. 9, pp. 21810-21822, 2021.  [paper]
  64. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Deterioration level estimation via neural network maximizing category-based ordinally supervised multi-view canonical correlation,” Multimedia Tools and Applications, vol. 80, pp. 23091-23112, 2021.  [paper]
  65. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Human-centric emotion estimation based on correlation maximization considering changes with time in visual attention and brain activity,” IEEE Access, vol. 8, pp. 203358-203368, 2020.  [paper]
  66. 前田圭介, 斉藤僚汰, 髙橋翔 小川貴弘, 長谷山美紀, “視線データと点検データの正準相関に基づく道路橋点検のための類似データ検索,” 土木学会論文集F3(土木情報学), vol. 76, no. 1, pp. 74-86, 2020. [paper]
  67. Takahiro Ogawa, Keisuke Maeda, Miki Haseyama, “Inpainting via sparse representation based on a phaseless quality metric,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 103, no. 12, pp. 1541-1551, 2020.  [paper]
  68. Keisuke Maeda, Kazaha Horii, Takahiro Ogawa, Miki Haseyama, “Multi-task convolutional neural network leading to high performance and interpretability via attribute estimation,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 103, no. 12, pp. 1609-1612, 2020. [paper]
  69. Keisuke Maeda, Tetsuya Kushima, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Estimation of interest levels from behavior features via tensor completion including adaptive similar user selection,” IEEE Access, vol. 8, pp. 126109-126118, 2020.  [paper]
  70. Keisuke Maeda, Yoshiki Ito, Takahiro Ogawa, Miki Haseyama, “Supervised fractional-order embedding geometrical multi-view CCA (SFGMCCA) for multiple feature integration,” IEEE Access, vol. 8, pp. 114340-114353, 2020.  [paper]
  71. Keisuke Maeda, Susumu Genma, Takahiro Ogawa, Miki Haseyama, “Image retrieval based on supervised local regression and global alignment with relevance feedback for insect identification,” ITE Transactions on Media Technology and Applications, vol. 8, no. 3, pp. 140-150, 2020.  [paper]
  72. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Few-shot personalized saliency prediction based on adaptive image selection considering object and visual attention,” Sensors, vol. 20, no. 8: 2170, pp. 1-15, 2020.  [paper]
  73. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Tensor-based emotional category classification via visual attention-based heterogeneous CNN feature fusion,” Sensors, vol. 20, no. 7: 2146, pp. 1-15, 2020.  [paper]
  74. Kazaha Horii, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Interpretable convolutional neural network including attribute estimation for image classification,” ITE Transactions on Media Technology and Applications, vol. 8, no. 2, pp. 111-124, 2020.  [paper]
  75. Kazaha Horii, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Human-centered image classification via a neural network considering visual and biological features,” Multimedia Tools and Applications, vol. 79, pp. 4395-4415, 2020.  [paper]
  76. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Convolutional sparse coding-based deep random vector functional link network for distress classification of road structures,” Computer-Aided Civil and Infrastructure Engineering, vol. 34, pp. 654-676, 2019.  [paper]
  77. Takahiro Ogawa, Yuma Sasaka, Keisuke Maeda, Miki Haseyama, “Favorite video classification based on multimodal bidirectional LSTM,” IEEE Access, vol. 6, pp. 61401-61409, 2018.  [paper]
  78. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Estimation of deterioration levels of transmission towers via deep learning maximizing canonical correlation between heterogeneous features,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 4, pp. 633-644, 2018.  [paper]
  79. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Distress classification of class-imbalanced inspection data via correlation maximizing weighted extreme learning machine,” Elsevier Journal of Advanced Engineering Informatics, vol. 37, pp. 79-87, 2018.  [paper]
  80. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Distress classification of road structures via adaptive Bayesian network model selection,” ASCE Journal of Computing in Civil Engineering, American Society of Civil Engineers, vol. 31, no. 5: 04017044, pp. 1-13, 2017.  [paper]
  81. Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Automatic Martian dust storm detection from multiple wavelength data based on decision level fusion,” IPSJ Transactions on Computer Vision and Applications, vol. 7, pp. 79-83, 2015.  [paper]

関連論文のImpact Factor 2022
 Computer-Aided Civil and Infrastructure Engineering:9.6
 Advanced Engineering Informatics:8.8
 Information Processing & Management:8.6
 IEEE Journal of Selected Topics in Signal Processing:7.5
 Journal of Computing in Civil Engineering:6.9
 Neurocomputing:6.0
 IEEE Access:3.9
 Sensors:3.9
 Multimedia Tools and Applications:3.6
 Journal of Imaging:3.2
 IEEE Open Journal of Signal Processing:2.8
 Applied Sciences:2.7
 Journal of Robotics and Mechatronics:1.1
 ITE Transactions on Media Technology and Applications:1.1

 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences:0.5

国際会議

  1. Tasuku Nakajima, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Multimodal adversarial defense trained on features extracted from images and brain activity,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  2. Yuiko Uchida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “An evaluation metric for single image-to-3D models based on a class confidence score of object detection models,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  3. Kenta Kubota, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “MLLM-based automatic exploration of editing prompt for high engagement image generation,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  4. Kenta Uesugi, Naoki Saito, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Zero-shot composed video retrieval with projection module bridging modality gap,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  5. Koshiro Toishi, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Improving zero-shot adversarial robustness via integrating image features of foundation models,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  6. Kaede Hayakawa, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Emotion-conditional image generation reflecting semantic alignment with text-to-image models,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  7. Longzhen Li, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Generative dataset distillation based on large model pool,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  8. Ryo Takahashi, Naoki Saito, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Personalized visual emotion classification via in-context learning in multimodal LLM,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  9. Shilin Liu, Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Zero-shot controllable music generation from videos using facial expressions,” IEEE Global Conference on Consumer Electronics (GCCE), 2024. (Accepted)
  10. Xiang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Reinforcing pre-trained models using counterfactual image,” IEEE International Conference on Image Processing (ICIP), 2024. (Accepted)
  11. Yaozong Gan, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Cross-domain few-shot in-context learning for enhancing traffic sign recognition,” IEEE International Conference on Image Processing (ICIP), 2024. (Accepted)
  12. Taro Togo, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Zero-shot high-risk situation detection based on semantic segmentation and pose estimation using fixed-point cameras at construction sites,” International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), 2024. (Accepted)
  13. Yuki Era, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Motion-STUDiO: Motion style transfer utilized for dancing operation by considering both style and dance features,” IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp.17-18, 2024.
  14. Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Introducing class replacement technique in class incremental learning in generative models,” IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2024. (Accepted)
  15. Longzhen Li, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Generative dataset distillation: balancing global structure and local details,” IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 7664-7671, 2024.
  16. Masaki Kashiwagi, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Enhancing noisy label learning via unsupervised contrastive loss with label correction based on prior knowledge,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 6235-6239, 2024.
  17. Masaya Sato, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Caption unification for multi-view lifelogging images based on in-context learning with heterogeneous semantic contents,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 8085-8089, 2024.
  18. Haruka Matsuda, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Multi-object editing in personalized text-to-image diffusion models via segmentation guidance,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 8140-8144, 2024.
  19. Yuhu Feng, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Privacy preserving gaze estimation via federated learning adapted to egocentric video,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3500-3504, 2024.
  20. Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Huang-Chia Shih, Miki Haseyama, “Masked modeling-based action event prediction considering bidirectional time-series in soccer,” International Workshop on Advanced Image Technology (IWAIT), vol. 13164, pp. 628-633, 2024. (国際共著論文)
  21. Yuya Moroto*, Rintaro Yanagi*, Naoki Ogawa, Kyohei Kamikawa, Keigo Sakurai, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Personalized content recommender system via non-verbal interaction using face mesh and facial expression,” ACM Multimedia (ACM MM Demo paper), pp. 9399-9401, 2023. (*equal contribution)
  22. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimating graph topology with smooth latent signals via Gaussian process,” International Workshop on the New Frontiers in Convergence Science and Technology: The 26th HU-SNU Joint Symposium Satellite Session,p. 34, 2023. (査読無し)
  23. Masaki Kashiwagi, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Deterioration level estimation for infrastructures considering noisy labels via DivideMix,” IEEE Global Conference on Consumer Electronics (GCCE), pp.840-841, 2023.
  24. Masaya Sato, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Caption unification for multiple viewpoint lifelogging images and its verification,” IEEE Global Conference on Consumer Electronics (GCCE), pp.417-418, 2023.
  25. Haruka Matsuda, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Text-to-image diffusion model suppressing catastrophic forgetting via elastic weight consolidation,” IEEE Global Conference on Consumer Electronics (GCCE), pp.842-843, 2023.
  26. Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Novel feature extraction for classification of auditory-visual stimuli from fNIRS signals,” IEEE Global Conference on Consumer Electronics (GCCE), pp.762-763, 2023.
  27. Xiang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Improving visual counterfactual explanation models for image classification via CLIP,” IEEE Global Conference on Consumer Electronics (GCCE), pp.392-393, 2023.
  28. Haoyang Wang, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A controllable recoloring method for novel views using segment anything model,” IEEE Global Conference on Consumer Electronics (GCCE), pp.590-591, 2023.
  29. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Text-guided facial image manipulation for wild images via manipulation direction-based loss,” IEEE International Conference on Image Processing (ICIP), pp.361-365, 2023.
  30. Yuki Era, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Video-music retrieval with fine-grained cross-modal alignment,” IEEE International Conference on Image Processing (ICIP), pp.2005-2009, 2023.
  31. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Multi-view variational recurrent neural network for human emotion recognition using multi-modal biological signals,” IEEE International Conference on Image Processing (ICIP), pp.2925-2929, 2023.
  32. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Feature integration via back-projection ordering multi-modal Gaussian process latent variable model for rating prediction,” IEEE International Conference on Image Processing (ICIP), pp.3125-3129, 2023.
  33. Tsubasa Kunieda, Ren Togo, Noriko Nishioka, Yukie Shimizu, Shiro Watanabe, Kenji Hirata, Keisuke Maeda, Takahiro Ogawa, Kohsuke Kudo, Miki Haseyama, “Estimation of amyloid-β positivity using QSM images considering age information,” IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 165-166, 2023.
  34. Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Shoot event prediction in soccer considering expected goals based on players’ positions,” IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 449-450, 2023.
  35. Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Prediction of shoot events by considering spatio-temporal relations of multimodal features,” IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 793-794, 2023.
  36. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Learning graph Laplacian from intrinsic patterns via Gaussian process,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1-5, 2023.
  37. Hiroki Okamura, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Improving dropout in graph convolutional networks for recommendation via contrastive loss,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1-5, 2023.
  38. Ryo Shichida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of visual contents from human brain signals via VQA based on brain-specific attention,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1-5, 2023.
  39. Jiahuan Zhang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Defense against black-box adversarial attacks via heterogeneous fusion features,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1-5, 2023.
  40. Yingrui Ye, Yuta Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Affective embedding framework with semantic representations from tweets for zero-shot visual sentiment prediction,” ACM Multimedia Asia, pp. 1-7, 2022.
  41. Nozomu Onodera, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Popularity-aware graph social recommendation for fully non-interaction users,” ACM Multimedia Asia, pp. 1-5, 2022.
  42. Tsubasa Kunieda, Ren Togo, Noriko Nishioka, Yukie Shimizu, Shiro Watanabe, Kenji Hirata, Keisuke Maeda, Takahiro Ogawa, Kohsuke Kudo, Miki Haseyama, “Prediction of amyloid-β positivity using QSM images based on bootstrap your own latent,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 135-136, 2022.
  43. Ryo Shichida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Analysis of relationships between visual cognitive contents and response of each brain region via visual question answering,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 413-414, 2022.
  44. Hiroki Okamura, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “GCN-based collaborative filtering considering personality bias,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 285-286, 2022.
  45. Yuhu Feng, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Refinement of gaze-based image caption for image retrieval,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 279-280, 2022.
  46. Yuki Era, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Content-based image retrieval using effective synthesized images from different camera views via pixelNeRF,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 415-416, 2022.
  47. Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Shoot event prediction from soccer videos by considering players’ spatio-temporal relations,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 417-418, 2022.
  48. Kazuki Yamamoto, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Cross-platform recommendation considering common users’ preferences based on preference propagation graphnet,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 133-134, 2022.
  49. Yutaka Yamada, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Trend prediction of students’ mock examination results using matrix completion,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 891-892, 2022.
  50. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Interest level estimation using behavior information through multi-view feature integration considering partial and ordered labels,” International Technical Conference on Circuits, Systems, Computers, and Communications (ITC-CSCC), pp. 1035-1037, 2022.
  51. Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Gaussian distributed graph constrained multi-modal Gaussian process latent variable model for ordinal labeled data,” IEEE International Conference on Image Processing (ICIP), pp. 3798-3802, 2022.
  52. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Few-shot personalized saliency prediction with similarity of gaze tendency using object-based structural information,” IEEE International Conference on Image Processing (ICIP), pp. 3823-3827, 2022.
  53. Yingrui Ye, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Visual sentiment prediction using cross-way few-shot learning based on knowledge distillation,” IEEE International Conference on Image Processing (ICIP), pp. 3838-3842, 2022.
  54. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Assessment of image manipulation using natural language description: Quantification of manipulation direction,” IEEE International Conference on Image Processing (ICIP), pp. 1046-1050, 2022.
  55. Ziwen Lan, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “GCN-based multi-modal multi-label attribute classification in anime illustration using domain-specific semantic features,” IEEE International Conference on Image Processing (ICIP), pp. 2021-2025, 2022.
  56. Yuhu Feng, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Human-centric image retrieval with gaze-based image captioning,” IEEE International Conference on Image Processing (ICIP), pp. 3828-3832, 2022.
  57. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Summarizing data structures with Gaussian process and robust neighborhood preservation,” Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pp. 157-173, 2022.
  58. Tsuyoshi Masuda, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama, ”Action classification based on LSTM using first and third person videos of engineers inspecting bridges,” IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 303-304, 2022.
  59. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Generative adversarial network including referring image segmentation for text-guided image manipulation,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4818-4822, 2022.
  60. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Distributed label dequantized gaussian process latent variable model for multi-view data integration,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4643-4647, 2022.
  61. Nozomu Onodera, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Variational Bayesian graph convolutional network for robust collaborative filtering,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3908-3912, 2022.
  62. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Human emotion recognition using multi-modal biological signals based on time lag-considered correlation maximization,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4683-4687, 2022.
  63. Yingrui Ye, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Visual sentiment prediction using few-shot learning via distribution relations of visual features,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 217-218, 2021.
  64. Jiahuan Zhang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Defense against image captioning attacks via a robust and stable recurrent neural network,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 850-851, 2021.
  65. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Movie rating estimation based on weakly supervised multi-modal latent variable model,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 221-222, 2021.
  66. Nozomu Onodera, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Graph analysis-based recommendation via entity embeddings using Wikipedia,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 5-6, 2021.
  67. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Text-guided image manipulation for desired region using referring image segmentation,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 740-741, 2021.
  68. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A trial of fine-grained classification of expert-novice level using bio-signals while inspecting subway tunnels,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 230-231, 2021.
  69. Taisei Hirakawa, Keisuke Maeda, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Analysis of social trends related to COVID-19 pandemic utilizing social media data,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 53-54, 2021.
  70. Ziwen Lan, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Multi-label image recognition based on multi-modal graph convolutional networks using captioning features,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 299-300, 2021.
  71. Yun Liang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Deep metric network via heterogeneous semantics for image sentiment analysis,” IEEE International Conference on Image Processing (ICIP), pp. 1039-1041, 2021.
  72. Tomoki Haruyama, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Segmentation-aware text-guided image manipulation,” IEEE International Conference on Image Processing (ICIP), pp. 2433-2437, 2021.
  73. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Time-lag aware multi-modal variational autoencoder using baseball videos and tweets for prediction of important scenes,” IEEE International Conference on Image Processing (ICIP), pp. 2678-2682, 2021.
  74. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Interest level estimation via multi-modal Gaussian process latent variable factorization,” IEEE International Conference on Image Processing (ICIP), pp. 1209-1213, 2021.
  75. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Correlation-aware attention branch network using multi-modal data for deterioration level estimation of infrastructures,” IEEE International Conference on Image Processing (ICIP), pp. 1014-1018, 2021.
  76. Taisei Hirakawa, Keisuke Maeda, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Cross-domain recommendation method based on multi-layer graph analysis with visual information,” IEEE International Conference on Image Processing (ICIP), pp. 2688-2692, 2021.
  77. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Few-shot personalized saliency prediction using person similarity based on collaborative multi-output Gaussian process regression,” IEEE International Conference on Image Processing (ICIP), pp. 1469-1473, 2021.
  78. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Degradation level estimation of road structures via attention branch network with text data,” IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW), pp. 1-2, 2021.
  79. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Human emotion estimation using multi-modal variational autoencoder with time changes,” IEEE Global Conference on Life Sciences and Technologies (LifeTech), pp. 82-83, 2021.
  80. Yusuke Akamatsu, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Classification of expert-novice level using eye tracking and motion data via conditional multimodal variational autoencoder,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1360-1364, 2021.
  81. Yun Liang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Cross-domain semi-supervised deep metric learning for image sentiment analysis,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4140-4144, 2021.
  82. Takaaki Higashi, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of visual features of viewed image from individual and shared brain information based on fMRI data using probabilistic generative model,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1335-1339, 2021.
  83. Masanao Matsumoto, Keisuke Maeda, Naoki Saito, Takahiro Ogawa, Miki Haseyama, “Multi-modal label dequantized Gaussian process latent variable model for ordinal label estimation,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3975-3979, 2021.
  84. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Feature integration via semi-supervised ordinally multi-modal Gaussian process latent variable model,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4120-4124, 2021.
  85. Taisei Hirakawa, Keisuke Maeda, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Cross-domain recommendation based on multilayer graph analysis using subgraph representation,” International Workshop on Advanced Image Technology (IWAIT), vol. 11766, pp. 632-635, 2021.
  86. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Important scene prediction of baseball videos using twitter and video analysis based on LSTM,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 636-637, 2020.
  87. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of user-specific visual attention considering individual tendency toward gazed objects,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 745-746, 2020.
  88. Yun Liang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of images matched with audio-induced brain activity via modified DGCCA,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 940-941, 2020.
  89. Taisei Hirakawa, Keisuke Maeda, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Cross-domain recommendation via multi-layer graph analysis using user-item embedding,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 714-715, 2020.
  90. Takaaki Higashi, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of viewed images using individual and shared brain responses,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 716-717, 2020.
  91. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Interest level estimation based on feature integration considering distribution of partially paired user’s behavior, videos and posters,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 944-945, 2020.
  92. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Feature integration via geometrical supervised multi-view multi-label canonical correlation for incomplete label assignment,” IEEE International Conference on Image Processing (ICIP), pp. 46-50, 2020.
  93. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Important scene detection of baseball videos via time-lag aware deep multiset canonical correlation maximization,” IEEE International Conference on Image Processing (ICIP), pp. 1236-1240, 2020.
  94. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Important scene detection based on anomaly detection using long short-term memory for baseball highlight generation,” IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW), pp. 1-2, 2020.
  95. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of person-specific visual attention via selection of similar persons,” IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW), pp. 1-2, 2020.
  96. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Mvgan maximizing time-lag aware canonical correlation for baseball highlight generation,” IEEE International Workshop of Artificial Intelligence in Sports (AI-Sports), pp. 1-6, 2020.
  97. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Distress level classification of road infrastructures via CNN generating attention map,” IEEE Global Conference on Life Sciences and Technologies (LifeTech), pp. 97-98, 2020.
  98. Genki Suzuki, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Quantitative analysis of engineer’s skill using wearable sensor data while inspecting highway bridge,” IEEE Global Conference on Life Sciences and Technologies (LifeTech), pp. 111-112, 2020.
  99. Kaito Hirasawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Semantic shot classification in baseball videos based on similarities of visual features,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 689-690,2019.
  100. Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Region-based distress classification of road infrastructures via CNN without region annotation,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 790-791, 2019.
  101. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of user-specific visual attention based on gaze information of similar users,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 486-487, 2019.
  102. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Neural network maximizing ordinally supervised multi-view canonical correlation for deterioration level estimation,” IEEE International Conference on Image Processing (ICIP), pp. 919-923, 2019.
  103. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of emotion labels via tensor-based spatiotemporal visual attention analysis,” IEEE International Conference on Image Processing (ICIP), pp. 4105-4109, 2019.
  104. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “User-specific visual attention estimation based on visual similarity and spatial information in images,” IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW), pp. 479-480, 2019.
  105. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Estimation of visual attention via canonical correlation between visual and gaze-based features,” IEEE Global Conference on Life Sciences and Technologies (LifeTech), pp. 229-230, 2019.
  106. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Multi-feature fusion based on supervised multi-view multi-label canonical correlation projection,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3936-3940, 2019.
  107. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “User-centric visual attention estimation based on relationship between image and eye gaze data,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 44-45, 2018.
  108. Kazaha Horii, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A human-centered neural network model with discriminative locality preserving canonical correlation analysis for image classification,” IEEE International Conference on Image Processing (ICIP), pp. 2366-2370, 2018.
  109. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Distress classification via neural network maximizing canonical correlation between multi-modal features,” GI-CoRE GSQ, GSB & IGM Joint Symposium, 2018. (査読無し)
  110. Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Automatic Martian dust storm detection via decision level fusion based on deep extreme learning machine,” IEEE International Conference on Image Processing (ICIP), pp. 435-439, 2017.
  111. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Automatic estimation of deterioration level on transmission towers via deep extreme learning machine based on local receptive field,” IEEE International Conference on Image Processing (ICIP), pp. 2379-2383, 2017.
  112. Kazaha Horii, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Image classification for trend prediction based on integration of fNIRS and visual features,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 301-302, 2017.
  113. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Deterioration level estimation on transmission towers based on machine learning,” GI-CoRE GSQ, GSB & IGM Joint Symposium, pp. 5-6, 2017. (査読無し)
  114. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Deterioration level estimation on transmission towers via extreme learning machine based on combination use of local receptive field and principal component analysis,” International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 457-458, 2017.
  115. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Distress classification of class imbalanced data for maintenance inspection of road structures in express way,” International Conference on Civil and Building Engineering Informatics in conjunction with Conference on Computer Applications in Civil and Hydraulic Engineering (ICCBEI & CCACHE), pp. 182-185, 2017.
  116. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Distress classification of road structures via decision level fusion,” IEEE International Conference on Digital Signal Processing (DSP), pp. 589-593, 2016.
  117. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Distress classification of road structures via multiple classifier-based Bayesian network,” International Workshop on Advanced Image Technology (IWAIT), pp. P.1, B-11, 2016.
  118. Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Automatic detection of Martian dust storms from heterogeneous data based on decision level fusion,” IEEE International Conference on Image Processing (ICIP), pp. 2246-2250, 2015.
  119. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Bayesian network-based distress estimation using image features in road structure assessment,” IEEE Global Conference on Consumer Electronics (GCCE), pp. 169-170, 2014.

 

国内学会

  1. Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Refining Generative Class Incremental Learning Performance through Model Forgetting Strategies,” MIRU 2024.
  2. 斉藤 直輝, 藤後 廉, 前田 圭介, 小林 累輝, 中村 隆央, 岡谷 基弘, 数井 誠人, 松沢 貴仁, 小川 貴弘, 長谷山 美紀, “半導体製造装置のセンサデータを用いた深層距離学習による類似事例検索に関する検討”, 第38回 人工知能学会全国大会 (JSAI), pp.1-4, 2024.
  3. 柳 凜太郎, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “ゴム材料の物性値に影響する工程 · 環境要因の推定に関する検討”, 第38回 人工知能学会全国大会 (JSAI), pp.1-4, 2024.
  4. 五箇 亮太, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “工事現場映像における深度情報を活用した重機接触事故リスクの推定”, 第38回 人工知能学会全国大会 (JSAI), pp.1-4, 2024.
  5. 七田 亮, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像注視時の脳活動データを用いたStable diffusionに基づくテキストからの画像生成に関する検討 ~潜在空間における脳活動データに基づく制御機構の導入~,” 映像情報メディア学会技術報告, vol.48, no.6, pp.194-198, 2024.
  6. Haoyang Wang, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A note on improvement of zero-shot video retrieval using LLM description based on multiple image captioning models,” ITE Technical Report, vol.48, no.6, pp.18-21, 2024.
  7. 岡村 洋希, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “視覚言語モデルにおける注目する特徴を指定可能なドメイン適応に関する検討,” 映像情報メディア学会技術報告, vol.48, no.6, pp.220-224, 2024.
  8. 五箇 亮太, 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “双方向Transformerに基づいたサッカー選手のイベントデータからの行動推定に関する検討,” 映像情報メディア学会技術報告, vol.48, no.6, pp.318-322, 2024.
  9. 佐藤 雅也, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “In-context Learningを用いた複数視点ライフログ画像のキャプションの統一化に関する検討,” 令和5年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 153-154, 2023.
  10. 李 想, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “視覚反実仮想機械学習モデルにおける精度向上に関する一検討 -特徴抽出モデルが精度に与える影響の検証-,” 令和5年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 156-157, 2023.
  11. 柏木 將希, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美, “事前学習済みモデルを用いたラベル修正に基づくNoisy Labels Learningの精度向上に関する検討,” 令和5年度電気・情報関係学会北海道支部連合大会 講演論文集, pp .240-241, 2023.
  12. 藤後 太郎, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “マルチモーダル大規模言語モデルを用いたfMRIからの言語情報の推定に関する検討 -In-context Learning に基づく時系列聴覚刺激からの言語情報の推定-,” 令和5年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 248-249, 2023.
  13. 松田 遥, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “拡散モデルによる画像生成における複数対象へのパーソナライズ手法に関する検討,” 令和5年度電気・情報関係学会北海道支部連合大会 講演論文集, pp .250-251, 2023.
  14. Yingrui Ye, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Zero-shot visual sentiment prediction with cross-domain sentiments using knowledge distillation,” 第26回 画像の認識・理解シンポジウム (MIRU), pp. 1-4, 2023. 【ロングオーラル】
  15. Yuto Watanabe, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Text-guided image manipulation tolerant to real-world image,” 第26回 画像の認識・理解シンポジウム (MIRU), pp. 1-5, 2023. 【ショートオーラル】
  16. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Human emotion recognition while viewing images based on multi-view variational recurrent neural network,” 第26回 画像の認識・理解シンポジウム (MIRU), pp. 1-4, 2023.
  17. Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Feature integration introducing back-projection based on ordering in labels for rating prediction,” 第26回 画像の認識・理解シンポジウム (MIRU), pp. 1-4, 2023.
  18. Yaozong Gan, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A note on traffic sign recognition based on vision transformer adapter using visual feature matching,” ITE Technical Report, vol. 47, no. 6, pp. 208-211, 2023.
  19. 五箇 亮太, 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “サッカー映像における時空間的関係を考慮したシュート予測の高精度化に関する検討 –競技者のチーム情報に基づく完全二部グラフの導入–,” 映像情報メディア学会技術報告, vol. 47, no. 6, pp. 227-232, 2023.
  20. 馮 鈺虎, 前田 圭介, 小川 貴弘, 長谷山 美紀, “ユーザの視線情報を考慮したコンテンツベースの画像再検索に関する検討,” 映像情報メディア学会技術報告, vol. 47, no. 6, pp. 295-299, 2023.
  21. 蘭 子文, 前田 圭介, 小川 貴弘, 長谷山美紀, “属性情報の階層関係を考慮したアニメイラストのマルチラベル分類に関する検討,” 映像情報メディア学会技術報告, vol. 47, no. 6, pp. 212-216, 2023.
  22. Jiahuan Zhang, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A note on specific object removal in urban scene using video inpainting approach,” ITE Technical Report, vol. 47, no. 6, pp. 277-280, 2023.
  23. 渡部 航史, 前田 圭介, 小川 貴弘, 長谷山 美紀, “クラス情報を導入したグラフ表現による教師有り潜在変数モデルの高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 47, no. 6, pp. 233-237, 2023.
  24. 東 孝明, 小川直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “道路構造物の変状画像分類の高精度化に関する検討ー自己教師あり学習の導入による事前知識の活用ー,” 第37回 信号処理シンポジウム, pp. 177-182, 2023.
  25. 五箇 亮太, 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “サッカー競技のスカウティング映像における選手間の時空間的関係を考慮した不確実性に基づくシュートイベント予測に関する検討,” 令和4年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 196-197, 2022.
  26. 江良 勇輝, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “pixelNeRFによる生成画像を用いた視点の変化に頑健な画像検索手法に関する検討,” 令和4年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 194-195, 2022.
  27. 岡村 洋希, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “協調フィルタリングにおける潜在因子モデルの埋め込み表現と人気バイアスの関係の検討,” 令和4年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 82-83, 2022.
  28. 國枝 翼, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “眼底画像を用いた教師なしドメイン適応に基づく糖尿病性網膜症の重症度の推定に関する検討,” 令和4年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 123-124, 2022.
  29. 七田 亮, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像注視時の脳活動データを用いたVQAモデルに基づく認知内容推定に関する検討 —fMRI デコーダに用いる回帰モデルによる推定精度に関する検証—,” 令和4年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 117-118, 2022.
  30. 山本 一輝, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “ドメイン共有ネットワークに基づく嗜好のドメイン依存性に頑健な推薦システムに関する検討,” 令和4年度電気・情報関係学会北海道支部連合大会 講演論文集, pp. 131-132, 2022.
  31. 西岡 典子, 平田 健司, 國枝 翼, 藤後 廉, 前田 圭介, 小川 貴弘, 清水 幸衣, 渡邊 史郎, 長谷山 美紀, 工藤 輿亮, “MRIによる定量的磁化率マッピングとAIを用いたアミロイドβ沈着予測,” 第1回 北海道大学医療AIシンポジウム, 2022.
  32. Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Few-shot personalized saliency prediction via person similarity using tensor-based regression,” 第25回 画像の認識・理解シンポジウム (MIRU), pp. 1-4, 2022.
  33. 梁 鋆, 前田 圭介, 小川 貴弘, 長谷山 美紀, “高速道路の遮音壁画像を用いた物体検出手法による変状分類の高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 359-363, 2022.
  34. 高田 紗弥, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “地下鉄トンネルの維持管理支援のためのマルチスケール解析を導入した深層学習に基づく変状検出に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 377-381, 2022.
  35. 平澤 魁人, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “地下鉄トンネル点検時の技術者から取得される生体信号と技術者の点検行動の関連性分析,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 365-370, 2022.
  36. 東 孝明, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像注視時の脳活動信号を用いた圧縮再構成ネットワークに基づく視覚認知内容の推定に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 349-353, 2022.
  37. 小川 直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Attention map に対する確信度を考慮可能な深層学習を用いた変状分類の高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 371-376, 2022.
  38. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像中の物体情報を考慮したユーザ類似度に基づく個人に特化した注視領域の推定に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 181-186, 2022.
  39. 上川 恭平, 前田 圭介, 小川 貴弘, 長谷山 美紀, “ユーザの動作情報を用いたコンテンツの関心度推定に関する検討 -複数ユーザを導入した特徴統合の有効性検証-,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 103-107, 2022.
  40. 平川 泰成, 小川 直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “道路構造物の維持管理効率化に向けた変状画像分類の高精度化に関する検討 -テキストデータに基づく類似事例の含有率の導入-,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 43-48, 2022.
  41. 叶 穎睿, 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “知識蒸留を用いたfew-shot learningに基づく画像の感情ラベル推定に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 171-175, 2022.
  42. 柳 凜太郎, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “ゴム材料開発のための generative adversarial network に基づく配合量および物性からの電子顕微鏡画像の生成に関する一検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 187-191, 2022.
  43. Jiahuan Zhang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A note on realizing adversarial defense based on regularization of multi-stage squeeze-and-excitation features,” ITE Technical Report, vol. 46, no. 6, pp. 87-90, 2022.
  44. 蘭 子文, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Captioning 特徴を利用したグラフ畳み込みネットワークに基づくアニメイラストのマルチラベル画像分類に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 161-165, 2022.
  45. 増田 毅, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “橋梁点検時の技術者の一人称および三人称視点映像を用いた点検動作の分類に関する検討,” 映像情報メディア学会技術報告, vol. 46, no. 6, pp. 177-180, 2022.
  46. 小野寺 望, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Shilling attackの状況下におけるグラフ解析に基づく推薦システムの脆弱性の検証,” 令和3年度 電気・情報関係学会北海道支部連合大会, pp. 121-122, 2021.
  47. 叶 穎睿, 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Few-shot Learningを用いた感情ラベル推定における複数のデータセット利用に関する初期検討,” 令和3年度 電気・情報関係学会北海道支部連合大会, pp. 123-124, 2021.
  48. 蘭 子文, 前田 圭介, 小川 貴弘, 長谷山 美紀, “グラフ畳み込みネットワークに基づくアニメイラストのマルチラベル画像認識に関する検討,” 令和3年度 電気・情報関係学会北海道支部連合大会, pp. 125-126, 2021.
  49. 渡邉 優宇人, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “テキスト入力型画像操作における操作領域に着目した精度評価に関する検討,” 令和3年度 電気・情報関係学会北海道支部連合大会, pp. 154-155, 2021.
  50. 渡部 航史, 前田 圭介, 小川 貴弘, 長谷山 美紀, “自己教師あり学習を導入した潜在変数モデルによる低次元特徴の抽出に関する検討,” 令和3年度 電気・情報関係学会北海道支部連合大会, pp. 108-109, 2021.
  51. 小川 直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Attention Map を用いた道路構造物の変状画像分類におけるテキストデータの導入に基づく高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 45, no. 4, pp.17-21, 2021.
  52. 梁 鋆, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Image Captioningの導入による画像の感情推定の高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 45, no. 4, pp. 65-69, 2021.
  53. 赤松 祐亮, 前田 圭介, 小川 貴弘, 長谷山 美紀, “地下鉄トンネル点検時の技術者から取得される視線およびモーションデータに基づく熟練度の推定に関する検討,” 映像情報メディア学会技術報告, vol. 45, no. 4, pp. 7-12, 2021.
  54. 平川 泰成, 前田 圭介, 小川 貴弘, 浅水 仁, 長谷山 美紀, “画像特徴を用いた多層グラフ解析に基づくクロスドメイン推薦に関する検討,” 映像情報メディア学会技術報告, vol. 45, no. 4, pp. 59-63, 2021.
  55. 平澤 魁人, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Twitterと映像を用いたMVAEに基づく野球映像の重要シーン予測に関する検討,” 映像情報メディア学会技術報告, vol. 45, no. 4, pp. 71-75, 2021.
  56. 春山 知生, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “地下鉄トンネルの維持管理支援を目的とした深層学習に基づく変状検出の高精度化に関する検討 ~壁面の施工方法に注目した精度検証〜,” 映像情報メディア学会技術報告, vol. 45, no. 4, pp. 1-6, 2021.
  57. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “路面画像を用いた異常検知に基づく路面状態の識別に関する検討,” 令和2年度 電気・情報関係学会北海道支部連合大会, pp. 118-119, 2020.
  58. 春山 知生, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “RICAPに基づくデータ拡張による地下鉄トンネルにおける変状検出精度の向上に関する検討,” 令和2年度 電気・情報関係学会北海道支部連合大会, pp. 116-117, 2020.
  59. 梁 鋆, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Multi-level Deep Metric Netに基づく画像の感情推定に関する検討,” 令和2年度 電気・情報関係学会北海道支部連合大会, pp. 81-82, 2020.
  60. 東 孝明, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像注視時のfMRIデータを用いた注視画像の推定に関する検討ー確率的生成モデルに基づく複数被験者の共通応答の導入ー,” 令和2年度 電気・情報関係学会北海道支部連合大会, pp. 75-76, 2020.
  61. 上川 恭平, 前田 圭介, 小川 貴弘, 長谷山 美紀, “m-SimGPを用いた特徴統合に基づくユーザの関心度推定に関する検討,” 令和2年度 電気・情報関係学会北海道支部連合大会, pp. 83-84, 2020.
  62. 平川 泰成, 前田 圭介, 小川 貴弘, 浅水 仁, 長谷山 美紀, “多層グラフ解析に基づくクロスドメイン推薦に関する検討 – 埋め込み特徴量の次元数の変化による精度検証 -,” 令和2年度 電気・情報関係学会北海道支部連合大会, pp. 85-86, 2020.
  63. 堀井 風葉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “道路構造物の維持管理効率化に向けた変状画像分類における信頼性の向上に関する検討,” 映像情報メディア学会技術報告, vol. 44, no. 6, pp. 51-56, 2020.
  64. 九島 哲哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “地下鉄トンネル点検時の生体信号に基づいた熟練および若手技術者の分類に関する検討,” 映像情報メディア学会技術報告, vol. 44, no. 6, pp. 101-105, 2020.
  65. 松井 太我, 前田 圭介, 小川 貴弘, 長谷山 美紀, “道路構造物の変状評価における技術者の視線データと熟練度の分析に関する一考察,” 映像情報メディア学会技術報告, vol. 44, no. 6, pp. 97-100, 2020.
  66. 松本 有衣, 前田 圭介, 小川 貴弘, 長谷山 美紀, “地下鉄トンネル維持管理支援を目的とした類似画像の検索に関する検討-技術者の評価を反映可能な距離計量学習の導入-,” 映像情報メディア学会技術報告, vol. 44, no. 6, pp. 47-50, 2020.
  67. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像注視時のヒトの感情推定のための視線特徴の推定に関する検討,” 映像情報メディア学会技術報告, vol. 44, no. 6, pp. 85-89, 2020.
  68. 平澤 魁人, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Twitterを用いた異常検知に基づく野球映像の重要シーン検出に関する検討,” 令和元年度 電気・情報関係学会北海道支部連合大会, pp. 116-117, 2019.
  69. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “Sparse Bayesian Learning に基づく注視領域の時間変化を考慮したヒトの感情推定に関する検討,” 令和元年度 電気・情報関係学会北海道支部連合大会, pp. 149-150, 2019.
  70. 小川 直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “変状分類における Grad-CAM++ に基づいた CNN の注目領域の可視化に関する検討,” 令和元年度 電気・情報関係学会北海道支部連合大会, pp. 153-154, 2019.
  71. Keisuke Maeda, Sho Takahashi, Takahiro Ogawa, Miki Haseyama, “Multi-feature fusion based on semi-supervised multi-view multi-label canonical correlation projection,” 第22回 画像の認識・理解シンポジウム (MIRU), pp. 1-4, 2019.
  72. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “視線情報を考慮した画像のテンソル表現に基づく感情ラベル推定に関する検討 – 複数ユーザの推定結果の統合に基づく高精度化–,” 第22回 画像の認識・理解シンポジウム (MIRU), pp. 1-4, 2019.
  73. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像の視覚的および空間的特徴に基づくユーザに特化した注視領域推定の高精度化に関する検討 ~ 視覚的特徴の類似度と推定精度の関係性に関する一考察~,” イメージ・メディア・クオリティ研究会 (IMQ), pp. 13-16, 2019.
  74. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “異種特徴を用いた深層学習に基づく送電鉄塔の劣化レベル分類の高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 43, no. 5, pp. 361-364, 2019.
  75. 堀井 風葉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “畳み込みニューラルネットワークにおける解釈性向上のための画像の属性分類に関する一検討,” 映像情報メディア学会技術報告, vol. 43, no. 5, pp. 275-279, 2019.
  76. 斉藤 僚汰, 前田 圭介, 小川 貴弘, 長谷山 美紀, “地下鉄トンネルの変状画像を用いた 技術者の注視領域推定のための初期検討 – 深層学習に基づく顕著領域の推定手法の適用 -,” 映像情報メディア学会技術報告, vol. 43, no. 5, pp. 281-285, 2019.
  77. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像注視時の注視領域の時間変化を考慮したテンソル解析に基づく感情推定に関する検討,” 平成30年度電気・情報関係学会北海道支部連合大会, pp. 137-138, 2018.
  78. 斉藤 僚汰, 前田 圭介, 小川 貴弘, 長谷山 美紀, “地下鉄トンネルの点検における視線データを用いた熟練度の分析に関する一考察,” 平成30年度電気・情報関係学会北海道支部連合大会, pp. 14-15, 2018.
  79. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “Convolutional Sparse Codingを導入した深層学習に基づく変状分類手法の構築,” 第21回 画像の認識・理解シンポジウム (MIRU), pp. PS2-47, 2018.
  80. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “道路構造物に発生する変状の自動分類の高精度化に向けたConvolutional Sparse Coding の導入に関する検討,” 映像情報メディア学会技術報告, vol. 42, no. 4, pp. 189-194, 2018.
  81. 堀井 風葉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “画像特徴量と fNIRS 特徴量の関連性に注目した画像分類の高精度化に関する検討,” 電気・情報関係学会北海道支部連合大会, pp. 114-115, 2017.
  82. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “正準相関最大化を導入した深層学習に基づく送電鉄塔の劣化レベル分類に関する検討,” 映像情報メディア学会技術報告, vol. 41, no. 29, pp. 11-14, 2017.
  83. 前田 圭介, 小川 貴弘, 長谷山 美紀, “深層学習を用いた道路構造物の維持管理における変状分類の高精度化に関する検討,” 映像情報メディア学会技術報告, vol. 41, no. 5, pp. 51-54, 2017.
  84. 前田 圭介, 小川 貴弘, 長谷山 美紀, “火星に発生するdust stormの自動検出に関する検討 -不均衡データを考慮した識別器の構築-,” 映像情報メディア学会技術報告, vol. 40, no. 28, pp. 47-48, 2016.
  85. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “道路構造物の維持管理における高精度な変状分類に関する検討 -タグデータと撮影画像に基づく分類結果の統合-,” 映像情報メディア学会技術報告, vol. 40, no. 6, pp. 181-184, 2016.
  86. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “個々の道路構造物に関する点検項目の導入による 道路構造物の変状推定の高精度化に関する検討,” 電気・情報関係学会北海道支部連合大会, p. 133, 2015.
  87. Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Automatic Martian dust storm detection from multiple wavelength data based on decision level fusion,” 第18回 画像の認識・理解シンポジウム (MIRU), pp. OS4-5, 2015. 【オーラル】
  88. 前田 圭介, 高橋 翔, 小川 貴弘, 長谷山 美紀, “複数の画像特徴を用いたベイジアンネットワークに基づく構造物の変状の推定の高精度化に関する検討,” 電気・情報関係学会北海道支部連合大会, pp. 140-141, 2014.

 

講演

  1. 前田 圭介, 小川 貴弘, 長谷山 美紀, “[特別講演]次世代インフラ維持管理に向けた研究と北海道開発局との連携協定における取組み,” 映像情報メディア学会技術報告, vol.48, no.6, pp.295-300 , 2024.
  2. 渡部 航史, 小川 直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “[特別講演]道路附属物のドローン映像を用いたvision transformerに基づく変状検出技術,” 映像情報メディア学会技術報告, vol.48, no.6, pp.301-304, 2024.
  3. 渡邉 優宇人, 小川 直輝, 前田 圭介, 小川 貴弘, 長谷山 美紀, “[特別講演]橋梁点検効率化のための生成AIを用いた所見生成技術,” 映像情報メディア学会技術報告, vol.48, no.6, pp.305-308, 2024.
  4. 吉田 将規, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “[特別講演]音声認識・生成AIを用いた通報音声からの事象発生地点予測,” 映像情報メディア学会技術報告, vol.48, no.6, pp.309-312, 2024.
  5. 前田 圭介, “最先端AI研究とその社会応用に関する講義,” 令和5年度SSH科学講演会, 札幌啓成高等学校, 2023/9/27
  6. 前田 圭介, “マルチモーダル解析に基づく分野横断研究の取組,” The 2nd Hokkaido Young Professionals Workshop, Invited Talk, 2022/11/26 (Virtual) [link].
  7. 前田 圭介, 小川 貴弘, 長谷山 美紀, “DX時代の社会インフラ維持管理に向けた先端AI研究,” IEEE札幌支部 学術講演会, 2021/11/25 (Virtual) [link].
  8. 前田 圭介, 小川 貴弘, 長谷山 美紀, “地下鉄トンネル維持管理への先端技術の導入(ドローン、BIシステム)-東京メトロの例- トンネル維持管理でのAIの活用,” 第7回鉄道技術展2021 Mass-Trans Innovation Japan 2021, 2021/11/24 (千葉) [link].
  9. 諸戸 祐哉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “【特別講演】路面画像を用いた深層学習に基づく路面状態の分類に関する検討,” 映像情報メディア学会技術報告(北海道大学 数理・データサイエンス公開シンポジウム), vol. 45, no. 4, pp. 165-169, 2021.
  10. 前田 圭介, 小川 貴弘, 長谷山 美紀, “【特別講演】社会インフラ維持管理効率化のための最先端AI技術の導入 -点検データを用いた変状分類の精度向上に向けた取り組み-,” 映像情報メディア学会技術報告(北海道大学 数理・データサイエンス公開シンポジウム), vol. 44, no. 6, pp. 359-362, 2020.

 

受賞

  1. デジタルツイン・DX奨励賞 (2024年6月3日) (五箇ほか, AI・データサイエンス論文集, 2024)
  2. The 2023 IEEE Sapporo Section Encouragement Award (2024年2月) (Y. Moroto et al., IEEE ICASSP, 2022)
  3. The 2023 IEEE Sapporo Section Student Paper Contest Encouraging Prize (2024年2月) (M. Kashiwagi et al., 電気・情報関係学会北海道支部連合大会, 2023)
  4. Best Paper Award (2024年1月) (R. Goka et al., IWAIT, 2024)
  5. 2023年 AI・データサイエンス賞【AI・データサイエンス論文賞】(2023年12月)(櫻井ほか, AI・データサイエンス論文集, 2023)
  6. 2023年 AI・データサイエンス賞【AI・データサイエンス奨励賞】(2023年12月)(諸戸ほか, AI・データサイエンス論文集, 2023)
  7. 令和5年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2023年12月) (T. Togo et al., 電気・情報関係学会北海道支部連合大会, 2023)
  8. 令和5年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2023年12月) (M. Sato et al., 電気・情報関係学会北海道支部連合大会, 2023)
  9. 令和5年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2023年12月) (H. Matsuda et al., 電気・情報関係学会北海道支部連合大会, 2023)
  10. Silver Prize GCCE2023 Excellent Paper Award (2023年10月) (H. Matsuda et al., IEEE GCCE 2023)
  11. Best Paper Award (Honorable Mention) (2023年7月) (R. Goka et al., ICCE-TW, 2023 Shoot Event Prediction in Soccer Considering Expected Goals Based on Players’ Positions)
  12. The 2022 IEEE Sapporo Section Encouragement Award (2023年1月) (K. Kamikawa et al., IEEE Access, 2021)
  13. The 2022 IEEE Sapporo Section Encouragement Award (2023年1月) (N. Ogawa et al., IEEE Access, 2021)
  14. 令和4年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2022年12月) (R. Goka et al., 電気・情報関係学会北海道支部連合大会, 2022)
  15. 令和4年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2022年12月) (R. Shichida et al., 電気・情報関係学会北海道支部連合大会, 2022)
  16. 令和4年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2022年12月) (K. Yamamoto et al., 電気・情報関係学会北海道支部連合大会, 2022)
  17. 2022 IEEE Sapporo Young Professionals Best Researcher Award (2022年11月) (K. Maeda)
  18. IEEE GCCE2022 Excellent Student Paper Awards, Bronze Prize (2022年11月) (K. Yamamoto et al., IEEE GCCE 2022)
  19. IEEE GCCE2022 Excellent Student Poster Award, Silver Prize (2022年10月) (Y. Era et al., IEEE GCCE 2022)
  20. The 2021 IEEE Sapporo Section Encouragement Award (2022年2月) (Y. Moroto et al., IEEE Access, 2021)
  21. 2021 IEEE Sapporo Section Student Paper Contest (2022年2月) (叶ほか, 電気・情報関係学会北海道支部連合大会, 2021)
  22. 映像情報メディア学会 優秀研究発表賞 (2021年12月) (N. Ogawa et al., ITE Technical report, 2021)
  23. 令和3年度 電気・情報関係学会北海道支部連合大会 若手優秀論文発表賞 (2021年11月) (小野寺ほか, 電気・情報関係学会北海道支部連合大会, 2021)
  24. IEEE GCCE2021 Excellent Student Poster Award Gold Prize (2021年10月) (T. Hirakawa et al., IEEE GCCE, 2021)
  25. IEEE GCCE2021 Outstanding Paper Award (2021年10月) (Z. lan et al., IEEE GCCE, 2021)
  26. 2021 IEEE Sapporo Young Professionals Best Paper Award (2021年8月) (K. Maeda et al., IEEE JSTSP, 2018)
  27. 3rd Prize IEEE LifeTech 2021 Excellent Paper Award for On-site Poster Presentation (2021年3月) (Y. Moroto et al., IEEE LifeTech, 2021)
  28. 令和2年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2020年11月) (諸戸ほか, 電気・情報関係学会北海道支部連合大会, 2020)
  29. 令和2年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2020年11月) (平川ほか, 電気・情報関係学会北海道支部連合大会, 2020)
  30. 令和2年度電気・情報関係学会北海道支部連合大会若手優秀論文発表賞 (2020年11月) (東ほか, 電気・情報関係学会北海道支部連合大会, 2020)
  31. The 2020 IEEE GCCE Silver Prize GCCE2020 Excellent Paper Award (2020年10月) (K. Hirasawa et al., IEEE GCCE, 2020)
  32. The 2020 IEEE GCCE Bronzer Prize GCCE2020 Excellent Paper Award (2020年10月) (K. Kamikawa et al., IEEE GCCE, 2020)
  33. The 2020 IEEE ICCE-TW Honorable Mention for Best Paper Award (2020年9月) (K. Hirasawa et al., IEEE ICCE-TW, 2020)
  34. The 2019 IEEE Sapporo Section Encouragement Award (2020年2月) (K. Maeda et al., IEEE JSTSP, 2018)
  35. The 2019 IEEE Sapporo Section Student Paper Contest Encouraging Prize (2020年2月) (諸戸ほか, 電気・情報関係学会北海道支部連合大会, 2019)
  36. The 2019 IEEE Sapporo Section Student Paper Contest Encouraging Prize (2020年2月) (小川ほか, 電気・情報関係学会北海道支部連合大会, 2019)
  37. 映像情報メディア学会 優秀研究発表賞 (2019年12月) (K. Horii et al., ITE Technical report, 2019)
  38. 2nd Prize IEEE LifeTech 2019 Excellent Paper Award (2019年3月) (Y. Moroto et al., IEEE LifeTech, 2019)
  39. 北海道大学 大学院情報科学研究科 研究科長賞 (2019年3月) (前田圭介)
  40. The 2018 IEEE Sapporo Section Encouragement Award (2019年2月) (K. Maeda et al., IEEE ICIP, 2017)
  41. 映像情報メディア学会 優秀研究発表賞 (2018年12月) (K. Maeda et al., ITE Technical report, 2018)
  42. IEEE GCCE 2018 Outstanding Paper Award (2018年10月) (Y. Moroto et al., IEEE GCCE, 2018)
  43. The 2017 IEEE Sapporo Section Encouragement Award (2018年2月) (K. Maeda et al., IEEE DSP, 2016)
  44. 平成29年度電気・情報関係学会北海道支部連合大会優秀論文発表賞 (2018年1月) (堀井ほか, 電気・情報関係学会北海道支部連合大会, 2017)
  45. 精密工学会画像応用技術専門委員会・映像情報メディア学会メディア工学研究委員会合同サマーセミナー 優秀発表賞 (2017年8月) (前田ほか, 映像情報メディア学会メディア工学研究会, 2017)
  46. 2017 IBM Ph. D. Fellowship award (2017年4月)
  47. The 2015 IEEE Sapporo Section Encouragement Award (2016年2月) (K. Maeda et al., IEEE GCCE, 2014)
  48. 平成27年度電気・情報関係学会北海道支部連合大会優秀論文発表賞 (2016年1月) (前田ほか, 電気・情報関係学会北海道支部連合大会, 2015)

 

その他の雑誌・報道発表など

  1. “土木におけるAI活用の現状と将来”, 建設総合ポータルサイト けんせつ Plaza, 2024/07/17 (櫻井 他, 土木学会 AI・データサイエンス論文集2022, 渡邉 他, 土木学会 AI・データサイエンス論文集2023に関して) [link]
  2. 前田 圭介, 小川 貴弘, 長谷山 美紀: “インフラ維持管理のDX実現に向けたAI研究”, 画像ラボ, vol.35, no.7, pp.21-25 (2024/07/10)
  3. “えりも町沿岸の天然コンブ漁場におけるブルーカーボンによるCO₂吸収量の調査に関するAI技術を用いた研究成果が、ジャーナル「Remote Sensing」に掲載されました”, 北海道大学 × SDGs, 2024/05/01 (G. Li, et al., Remote Sensing, 2024に関して)
  4. “映像からの腐食検出精度96% AIで道路付属物点検高度化”, 建設工業新聞, 2024/05/01 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して)
  5. “検出精度は96%に AIで道路付属物点検”, 建設通信新聞, 2024/05/01 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して) [link]
  6. “AIでの損傷検出「有効」 道路付属物点検の研究成果”, 北海道通信, 2024/04/30 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して)
  7. “AIでの損傷検出「有効」/道路付属物点検の研究成果/柿崎開発局長と長谷山北大副学長”, DOTSU-NET, 2024/04/30 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して) [link]
  8. “AI活用で道路標識点検 ドローンで腐食検出、精度96%に”, 北海道建設新聞, 2024/04/30 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して)
  9. “ドローンとAI解析で96%の特定率 作業負担を大幅に軽減-開発局と北大、道路付属物の点検作業効率化研究成果”, きたリンク, 2024/04/27 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して) [link]
  10. “AIで道路標識の腐食発見 開発局と北海道大、共同研究の中間報告”, 北海道新聞, 2024/04/27 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して)
  11. “AIで道路標識の腐食発見 開発局と北海道大、共同研究の中間報告”, 北海道新聞デジタル, 2024/04/27 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して) [link]
  12. “北海道開発局と北大 道路標識の腐食を「説明可能なAI」で検出、点検効率化へ有効性報告”, 北海道建設新聞, 2024/04/26 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して) [link]
  13. “北大の共同研究拠点開所”, 日本経済新聞, 2024/04/20 (NEXCO東日本グループとの共同研究に関して) [link]
  14. “北大、民間とAI研究施設 ニトリや新興企業入居 社会課題解決へ交流”, 北海道新聞, 2024/04/18 (NEXCO東日本グループとの共同研究に関して) [link]
  15. “教訓活かし通行止めを回避 北大と共同でAI活用した道路付属物点検など”, きたリンク, 2024/04/18 (渡部 他, 映像情報メディア学会[特別講演], 2024に関して) [link]
  16. “北大に「ワークラボ」開設”, 建設通信新聞, 2024/04/09 (NEXCO東日本グループとの共同研究に関して) [link]
  17. “ChatGPTの新機能「GPT-4V」など、言語と画像のマルチモーダルAIを土木に用いるアイデア【土木×AI第22回】”, BUILT – ITmedia, 2024/01/12 (渡邉 他, 土木学会 AI・データサイエンス論文集2022に関して) [link]
  18. “CO2 60トン吸収認証 えりものブルーカーボン 雑海藻駆除しコンブ増”, 北海道新聞, 2024/01/10 [link]
  19. “CO2吸収量 森林の9倍”, 北海道新聞, 2023/09/28 [link]
  20. “コンブがCO2吸収”, 北海道建設新聞, 2023/09/27
  21. “コンブで脱炭素後押し”, 北海道新聞, 2023/07/02 [link]
  22. “【第19回】「ChatGPT」など大規模言語モデルの仕組みと土木領域での可能性,” IT media, 2023/06/20 (櫻井 他, 土木学会 AI・データサイエンス論文集2022に関して) [link]
  23. “コンブのCO2吸収量 年内にも算出”, 北海道新聞,2023/06/07 [link]
  24. “えりも町 海中で二酸化炭素を吸収「ブルーカーボン」の検討会”, NHK NEWS WEB, 2023/06/07 [link]
  25. “北海道開発局、えりも町で「ブルーカーボン」調査,” 日本経済新聞, 2023/04/26 [link]
  26. “インフラDXで地方創生,” 北海道建設新聞, 2023/02/14 (インフラ関連の研究に関して)
  27. “北海道発 情報連携による防災・減災のイノベーションシンポジウム,” dec monthly, 2022/07/01 (インフラ関連の研究に関して) [link]
  28. “ドローンとAIで道路標識など管理 開発局と北大が共同研究へ,” NHK NEWS WEB, 2023/06/24(N. Ogawa, et al., ICIP2021に関して)
  29. “北海道大学がデータビジネス拠点 副学長「世界に発信」,” 日本経済新聞, 2022/01/22 (K. Horii, et al., MTAP 2019に関して) [link]
  30. “AIの実社会応用と次世代インフラ維持管理,” 學士會会報, 2022/01 (K. Maeda, et al., CACAIE 2019, N. Ogawa, et al., ICIP 2021に関して) [link]
  31. “北海道大 情報科学研究院 AI活用でインフラ点検,” 日本経済新聞, 2021/06/16. (Akamatsu, et al., ITE technical report, 2021に関して) [link]

研究プロジェクト

  1. 日本学術振興会 科学研究費助成事業 基盤研究(C), “画像認識の高度化に向けた画像の撮影方法を最適化する異環境異種データ適応型AIの構築” (2023/04~) (研究代表者)
  2. 日本学術振興会 科学研究費助成事業 基盤研究(B), “エッジAI時代の超低演算量・低容量化を実現する汎用深層学習理論の構築” (2021/04~2024/01) (研究分担者)
  3. 日本学術振興会 科学研究費助成事業(学術研究助成基金助成金) 若手研究, “技術者の認知・判断・行動プロセスに基づくハイパーマルチモーダル画像分類技術の構築”(2020/04~2023/03)
  4. 戦略的情報通信研究開発推進事業(SCOPE) 重点領域型研究開発(ICT重点研究開発分野推進型(3年枠)), “自治体による観光情報発信支援のためサイバーフィジカルデータ解析プラットフォームに関する研究開発”(2020/04~2021/03)(研究分担者)
  5. 日本学術振興会 科学研究費補助金 特別研究員奨励費, “専門家の認知プロセスを模擬した深層学習に基づく画像分類技術の構築”(2018/04~2020/02)(研究代表者)

 

学会活動

会議委員等

  1. IEEE Global Conference on Consumer Electronics (GCCE) 2019, Technical Program Committee Member
  2. IEEE Global Conference on Consumer Electronics (GCCE) 2020, Organized Session Co-chair (Actual Data Science and Engineering for Enhancement of Human Abilities and Social Infrastructure)
  3. IEEE Global Conference on Consumer Electronics (GCCE) 2021, Organized Session Co-chair (Actual Data Science and Engineering for Enhancement of Human Abilities and Social Infrastructure)
  4. IEEE Global Conference on Consumer Electronics (GCCE) 2022, Organized Session Co-chair (Actual Data Science and Engineering for Enhancement of Human Abilities and Social Infrastructure)
  5. IEEE Global Conference on Consumer Electronics (GCCE) 2023, Organized Session Co-chair (Actual Data Science and Engineering for Enhancement of Human Abilities and Social Infrastructure)

査読

  1. IEEE International Conference on Image Processing (ICIP)
  2. IEEE Global Conference on Consumer Electronics (GCCE)
  3. IEEE Global Conference on Life Sciences and Technologies (LifeTech)
  4. IEEE International Conference on Multimedia and Expo (ICME) Workshop of Artificial Intelligence in Sports (AI-Sports)
  5. ITE Transactions on Media Technology and Applications
  6. IEEE International Conference on Pattern Recognition (ICPR)
  7. Asia Pacific Conference of the Prognostics and Health Management Society (PHMAP)
  8. IEICE Transactions
  9. 映像情報メディア学会誌
  10. 土木学会 AI・データサイエンス論文集