過去のお知らせ
世界最高峰の信号処理に関する国際会議 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024: https://2024.ieeeicassp.org/)にて、研究室より9件の発表を行いました!
世界最高峰の信号処理に関する国際会議 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024: https://2024.ieeeicassp.org/)にて、研究室より9件の発表を行いました!
- T. Seino, N. Saito, T. Ogawa, S. Asamizu and M. Haseyama, “Confidence-Aware Spatial-Temporal Attention Graph Convolutional Network for Skeleton-Based Expert-Novice Level Classification”
- H. Zhu, R. Togo, T. Ogawa and M. Haseyama, “Prompt-Based Personalized Federated Learning for Medical Visual Question Answering”
- M. Kashiwagi, K. Maeda, R. Togo, T. Ogawa and M. Haseyama, “Enhancing Noisy Label Learning Via Unsupervised Contrastive Loss with Label Correction Based on Prior Knowledge”
- M. Sato, K. Maeda, R. Togo, T. Ogawa and M. Haseyama, “Caption Unification for Multi-View Lifelogging Images Based on In-Context Learning with Heterogeneous Semantic Contents”
- Y. Feng, K. Maeda, T. Ogawa and M. Haseyama, “Privacy Preserving Gaze Estimation Via Federated Learning Adapted To Egocentric Video”
- Y. Watanabe, R. Togo, K. Maeda, T. Ogawa and M. Haseyama, “TolerantGAN: Text-Guided Image Manipulation Tolerant to Real-World Image”
- Z. Li, R. Togo, T. Ogawa and M. Haseyama, “Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation”
- Y. Moroto, Y. Ye, K. Maeda, T. Ogawa and M. Haseyama, “Zero-Shot Visual Sentiment Prediction via Cross-Domain Knowledge Distillation”
- H. Matsuda, R. Togo, K. Maeda, T. Ogawa and M. Haseyama, “Multi-Object Editing in Personalized Text-To-Image Diffusion Model Via Segmentation Guidance”