NEWS お知らせ

過去のお知らせ

  • IEEE ICIP 2024に当研究室の論文3件が採択されました!

    IEEE ICIP 2024に当研究室の論文3件が採択されました!
    UAEアブダビで開催予定の世界最大規模の画像処理系国際会議2024 IEEE International Conference on Image Processing (IEEE ICIP 2024、採択率:48%)に当研究室から投稿した以下の3件の論文が採択されました。
    ①Xiang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “REINFORCING PRE-TRAINED MODELS USING COUNTERFACTUAL IMAGE”
    ②Yaozong Gan, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “CROSS-DOMAIN FEW-SHOT IN-CONTEXT LEARNING FOR ENHANCING TRAFFIC SIGN RECOGNITION”
    ③Huaying Zhang, Rintaro Yanagi, Ren Togo, Takahiro Ogawa, Miki Haseyama, “ZERO-SHOT COMPOSED IMAGE RETRIEVAL CONSIDERING QUERY-TARGET RELATIONSHIP LEVERAGING MASKED IMAGE-TEXT PAIRS”

    https://2024.ieeeicip.org

  • 2024年5月28日から31日まで静岡県浜松市で開催された国内最大規模のAI研究発表のイベントである第38回人工知能学会全国大会にて当研究室から5件の発表を行いました!

    2024年5月28日から31日まで静岡県浜松市で開催された国内最大規模のAI研究発表のイベントである第38回人工知能学会全国大会にて当研究室から5件の発表を行いました!

    [1] 五箇 亮太, 前田 圭介, 藤後 廉, 小川 貴弘, 長谷山 美紀, “工事現場映像における深度情報を活用した重機接触事故リスクの推定”

    [2] 清野 竜生, 斉藤 直輝, 小川 貴弘, 浅水 仁, 長谷山 美紀, “モーションおよび視線データを用いたSpatial Temporal Attention GCNによる熟練度分類に関する検討”

    [3] 斉藤 直輝, 藤後 廉, 前田 圭介, 小林 累輝, 中村 隆央, 岡谷 基弘, 数井 誠人, 松沢 貴仁, 小川 貴弘, 長谷山 美紀, “半導体製造装置のセンサデータを用いた深層距離学習による類似事例検索に関する検討”

    [4] 櫻井 慶悟, 藤後 廉, 小川 貴弘, 長谷山 美紀, “Graph masked autoencoderを用いた知識グラフ推論に基づく説明可能性のある推薦に関する検討”

    [5] 柳 凜太郎, 藤後 廉, 前田 圭介, 小川 貴弘, 長谷山 美紀, “ゴム材料の物性値に影響する工程・環境要因の推定に関する検討”

    [1]は東日本高速道路株式会社北海道支社との共同研究成果、

    [3]は東京エレクトロン株式会社との共同研究成果、

    [5]は住友ゴム工業株式会社との共同研究成果です。

  • 2024年5月27日に土木学会で開催されたデジタルツイン・DXシンポジウム2024にて当研究室から5件の発表を行いました!

    2024年5月27日に土木学会で開催されたデジタルツイン・DXシンポジウム2024にて当研究室から5件の発表を行いました!

    [1] 大羽賀駿也, 前田圭介, 藤後廉, 小川貴弘, 長谷山美紀,”工事現場の定点カメラを用いた物体検出および姿勢推定に基づくZero-shot高リスク状況検出”

    [2] 五箇亮太, 前田圭介, 藤後廉, 小川貴弘, 長谷山美紀,”Spatial-temporal attentionを導入した再帰型ニューラルネットワークに基づく重機との接触事故リスクの推定”

    [3] 吉田将規, 前田圭介, 藤後廉, 小川貴弘, 長谷山美紀,”大規模言語モデルを用いた通報音声からの事象発生地点予測”

    [4] Zongyao Li, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama,”Generalizing deep learning-based distress segmentation models for subway tunnel images by test-time training”

    [5] 清野竜生, 斉藤直輝, 前田圭介, 小川貴弘, 長谷山美紀,”地下鉄トンネル点検における技術者のモーションデータを用いた熟練度分類-説明可能なGraph Convolutional Networkの導入-”

    [1]および[2]は東日本高速道路株式会社北海道支社との共同研究成果、

    [3]は一般財団法人 北海道道路管理技術センターとの共同研究成果、

    [4]および[5]は東京地下鉄株式会社との共同研究成果です。

    本シンポジウムにて発表した論文は,「AI・データサイエンス論文集」として,J-STAGEに掲載されています。

  • 国内最大規模の画像の認識・理解シンポジウムMIRU2024に3件の論文が口頭発表論文として採択されました!

    国内最大規模の画像の認識・理解シンポジウムMIRU2024に3件の論文が口頭発表論文として採択されました!
    2024年8月6日~9日に熊本で開催されるMIRU2024に、以下の3件の論文が、口頭発表論文(採択率31%)として採択されました。

    • Huaying Zhang, Rintaro Yanagi, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Integrating Query-target Relationship to Zero-shot Composed Image Retrieval from Masked Image-text Pairs,” MIRU 2024.
    • He Zhu, Ren Togo, Takahiro Ogawa, Miki Haseyama, “Reliable and Personalized Federated Learning with Prompt-based Method for Visual Question Answering in Medical Domain,” MIRU 2024.
    • Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa and Miki Haseyama, “Refining Generative Class Incremental Learning Performance through Model Forgetting Strategies,” MIRU 2024.

    https://miru-committee.github.io/miru2024/?fbclid=IwZXh0bgNhZW0CMTEAAR0WC8gRC5dChZEstZyz-tgQsUyWsc4hkhFCTfdxtXff3i031fn3JsmMbQ4_aem_AZ0PWy1jljTUT7Mbn0dMt0LcKQCtIbKjXbObBDKlTuGKJbhwRDB7-jDLI_MONpvFLiByHar2qlQypK4gF4K8ipH4

  • 脳活動情報から未病検知を目指す萌芽的な研究論文が、学術論文誌Bioengineering (2022 IF: 4.6) に採録されました!

    脳活動情報から未病検知を目指す萌芽的な研究論文が、学術論文誌Bioengineering (2022 IF: 4.6) に採録されました!

    本研究は、ムーンショット型研究開発事業「病気につながる血管周囲の微小炎症を標的とする量子技術、ニューロモデュレーション医療による未病時治療法の開発」に係る成果です。

    Keisuke Maeda, Takahiro Ogawa, Tasuku Kayama, Takuya Sasaki, Kazuki Tainaka, Masaaki Murakami, Miki Haseyama, “Trial Analysis of Brain Activity Information for Presymptomatic Disease Detection of Rheumatoid Arthritis,” Bioengineering, 2024. (Accepted for publication)

  • 回路・システム・コンピュータ・通信技術に関する国際会議39th International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC 2024)にメディアダイナミクス研究室より投稿した以下の2件の論文が採択されました!

    回路・システム・コンピュータ・通信技術に関する国際会議39th International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC 2024)にメディアダイナミクス研究室より投稿した以下の2件の論文が採択されました!
    https://www.itc-cscc2024.org/
    [1] Taro Togo, Keisuke Maeda, Ren Togo, Takahiro Ogawa and Miki Haseyama, “Zero-shot High-risk Situation Detection Based on Semantic Segmentation and Pose Estimation Using Fixed-point Cameras at Construction Sites”
    [2] Tatsuki Seino, Naoki Saito, Takahiro Ogawa, Satoshi Asamizu and Miki Haseyama, “Graph Convolutional Network-based Sports Skill-level Recognition via Deep Metric Learning”

  • CO2 吸収能力推定を目的とした藻場領域のセグメンテーションに関する論文が、学術論文誌Remote Sensing (2022 IF: 5.0)に採録されました!

    CO2 吸収能力推定を目的とした藻場領域のセグメンテーションに関する論文が、学術論文誌Remote Sensing (2022 IF: 5.0)に採録されました!

    本研究成果はブルーカーボンによるCO2吸収量調査の効率化に貢献可能な技術です.

    Guang Li, Ren Togo, Keisuke Maeda, Akinori Sako, Isao Yamauchi, Tetsuya Hayakawa, Shigeyuki Nakamae, Takahiro Ogawa, Miki Haseyama, “Algal bed region segmentation based on ViT-Adapter using aerial images for estimating CO2 absorption capacity,” Remote Sensing, 2024. (Accepted for publication)

    ※本研究成果は、国土交通省北海道開発局、国立研究開発法人寒地土木研究所、株式会社アルファ水工コンサルタンツおよび北海道えりも町との連携による研究成果です.

    https://www.hokudai.ac.jp/news/pdf/230425_pr.pdf



  • グラフ畳み込みネットワークを用いた熟練度分類に関する研究成果が、学術論文誌Sensors(2022 IF: 3.9)に採録されました!

    グラフ畳み込みネットワークを用いた熟練度分類に関する研究成果が、学術論文誌Sensors(2022 IF: 3.9)に採録されました!

    Tatsuki Seino, Naoki Saito, Takahiro Ogawa, Satoshi Asamizu, Miki Haseyama, “Expert–novice Level Classification Using Graph Convolutional Network

    Introducing Confidence-aware Node-level Attention Mechanism,” Sensors (Accepted for publication), 2024.

    https://www.mdpi.com/journal/sensors

  • 継続学習への忘却機構導入に関する研究成果が、学術論文誌Sensors (2022 IF: 3.9)に採録されました!

    継続学習への忘却機構導入に関する研究成果が、学術論文誌Sensors (2022 IF: 3.9)に採録されました!

    Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Analysis of Continual Learning Techniques for Image Generative Models with Learned Class Information Management,” Sensors (Accepted for publication), 2024.

    https://www.mdpi.com/journal/sensors

  • 交通データを対象とした映像の品質評価手法に関する論文が、学術論文誌Sensors (2022 IF: 3.9)に採録されました!

    交通データを対象とした映像の品質評価手法に関する論文が、学術論文誌Sensors (2022 IF: 3.9)に採録されました!

    Yuhu Feng, Jiahuan Zhang, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “A Novel Frame Selection Metric for Video Inpainting to Enhance Urban Feature Extraction,” Sensors (Accepted for publication), 2024.

    尚,本研究成果は日本無線株式会社との共同研究成果です.

    https://www.mdpi.com/journal/sensors

  • 冬季高速道路を対象とした路面の異常検知に関する論文が,土木情報系トップジャーナルComputer-Aided Civil and Infrastructure Engineering(Impact Factor: 9.6)に採録されました。本成果は,NEXCO東日本グループとの共同研究によるものです。

    冬季高速道路を対象とした路面の異常検知に関する論文が,土木情報系トップジャーナルComputer-Aided Civil and Infrastructure Engineering(Impact Factor: 9.6)に採録されました。
    本成果は,NEXCO東日本グループとの共同研究によるものです。
    Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, and Miki Haseyama, “Snow- or Ice-covered Road Detection in Winter Road Surface Conditions using Deep Neural Networks,” Computer-Aided Civil and Infrastructure Engineering (Accepted for publication).

    https://onlinelibrary.wiley.com/page/journal/14678667/homepage/forauthors.html



  • コンシューマエレクトロニクス関連の国際会議 IEEE International Conference on Consumer Electronics – Taiwan, 2024 (ICCE-TW)にメディアダイナミクス研究室より投稿した以下の3件の論文が採択されました!台湾(台中)にて開催予定です.

    コンシューマエレクトロニクス関連の国際会議 IEEE International Conference on Consumer Electronics – Taiwan, 2024 (ICCE-TW)にメディアダイナミクス研究室より投稿した以下の3件の論文が採択されました!台湾(台中)にて開催予定です.

    – Jinlong Zhu, Keigo Sakurai, Ren Togo, Takahiro Ogawa and Miki Haseyama, “Discriminator-enhanced Music Generation Based on Multitrack Music Transformer,” ICCE-TW 2024.

    – Yuki Era, Ren Togo, Keisuke Maeda, Takahiro Ogawa and Miki Haseyama, “Motion-STUDiO: Motion Style Transfer Utilized for Dancing Operation by Considering Both Style and Dance Features,” ICCE-TW 2024.

    – Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa and Miki Haseyama, “Introducing Class Replacement Technique in Class Incremental Learning in Generative Models,” ICCE-TW 2024.

  • CVPR 2024 Workshopに採択されました!

    CVPR 2024 Workshopに採択されました!
    当研究室から投稿した生成型データセット蒸留に関する以下の論文が,The 1st CVPR Workshop on Dataset Distillationに採択されました.
    Longzhen Li, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, “Generative dataset distillation: balancing global structure and local details,” CVPR Workshop, 2024. (Accepted)

    https://sites.google.com/view/dd-cvpr2024/home

  • 世界最高峰の信号処理に関する国際会議 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024: https://2024.ieeeicassp.org/)にて、研究室より9件の発表を行いました!

    世界最高峰の信号処理に関する国際会議 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024: https://2024.ieeeicassp.org/)にて、研究室より9件の発表を行いました!

    1. T. Seino, N. Saito, T. Ogawa, S. Asamizu and M. Haseyama, “Confidence-Aware Spatial-Temporal Attention Graph Convolutional Network for Skeleton-Based Expert-Novice Level Classification”
    2. H. Zhu, R. Togo, T. Ogawa and M. Haseyama, “Prompt-Based Personalized Federated Learning for Medical Visual Question Answering”
    3. M. Kashiwagi, K. Maeda, R. Togo, T. Ogawa and M. Haseyama, “Enhancing Noisy Label Learning Via Unsupervised Contrastive Loss with Label Correction Based on Prior Knowledge”
    4. M. Sato, K. Maeda, R. Togo, T. Ogawa and M. Haseyama, “Caption Unification for Multi-View Lifelogging Images Based on In-Context Learning with Heterogeneous Semantic Contents”
    5. Y. Feng, K. Maeda, T. Ogawa and M. Haseyama, “Privacy Preserving Gaze Estimation Via Federated Learning Adapted To Egocentric Video”
    6. Y. Watanabe, R. Togo, K. Maeda, T. Ogawa and M. Haseyama, “TolerantGAN: Text-Guided Image Manipulation Tolerant to Real-World Image”
    7. Z. Li, R. Togo, T. Ogawa and M. Haseyama, “Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation”
    8. Y. Moroto, Y. Ye, K. Maeda, T. Ogawa and M. Haseyama, “Zero-Shot Visual Sentiment Prediction via Cross-Domain Knowledge Distillation”
    9. H. Matsuda, R. Togo, K. Maeda, T. Ogawa and M. Haseyama, “Multi-Object Editing in Personalized Text-To-Image Diffusion Model Via Segmentation Guidance”

  • 当研究室 長谷山教授が令和6年度科学技術分野の文部科学大臣表彰 科学技術賞(研究部門)を受賞しました!

    当研究室 長谷山教授が令和6年度科学技術分野の文部科学大臣表彰 科学技術賞(研究部門)を受賞しました!
    本賞は、科学技術に関する研究開発、理解増進等において顕著な成果を収めた者について、その功績を讃えることにより、科学技術に携わる者の意欲の向上を図り、日本の科学技術水準の向上に寄与することを目的として表彰されるものです。
    誠におめでとうございます!

  • 当研究室の長谷山教授が拠点長を務めるデータ駆動型融合研究創発拠点(D-RED)が北海道新聞デジタルにて紹介されました。

    当研究室の長谷山教授が拠点長を務めるデータ駆動型融合研究創発拠点(D-RED)が北海道新聞デジタルにて紹介されました。

    https://www.hokkaido-np.co.jp/article/1001521

    D-REDは、民間企業等と連携し、人工知能(AI)を活用した課題解決を実施するための施設です。

    今月19日には、開所式が開催されます。

  • 2024年4月5日に,長谷山教授が拠点長を務めるデータ駆動型融合研究創発拠点にて,NEXCO東日本グループの研究ユニットの開所式が開催されました.

    2024年4月5日に,長谷山教授が拠点長を務めるデータ駆動型融合研究創発拠点にて,NEXCO東日本グループの研究ユニットの開所式が開催されました.
    本ユニットでは,長谷山・小川研究室との共同研究を軸として,次世代インフラ維持管理に向けた様々な研究開発を実施していきます.

  • 新年度のメディアダイナミクス研究室について

    新年度のメディアダイナミクス研究室について
    4月より新たに6名の学生が博士課程に、11名の学生が修士課程に入学しました。
    修士課程に入学した学生のうち5名は、他大学から新たにメディアダイナミクス研究室に加わる学生です。
    皆様、おめでとうございます!

    /https://www-lmd.ist.hokudai.ac.jp/member/

  • 長谷山美紀先生が、情報科学研究院長の4年間の任期を終えられました!

    長谷山美紀先生が、情報科学研究院長の4年間の任期を終えられました!
    2020年4月~2024年3月まで情報科学研究院長を務められた当研究室教授の長谷山先生が本日任期を満了で終えられ、花束贈呈式が行われました。
    コロナ禍で始まった研究院長の任務ですが、その中でも研究院を導いて頂いたことに感謝致します。
    大変にお疲れ様でした!

  • 北海道大学の学位授与式が開催され、当研究室の博士学生3名、修士学生10名、および学部学生3名がそれぞれ学位を授与されました。

    北海道大学の学位授与式が開催され、当研究室の博士学生3名、修士学生10名、および学部学生3名がそれぞれ学位を授与されました。
    博士学生3名・修士学生4名は研究室を巣立ち、6名の修士学生は博士課程に進学します。また、学部学生全員が修士課程に進学します。
    また、卒業生・修了生に以下の賞が授与されました。
    ●北海道大学 工学部長賞(旧ウィリアム・ウィラー賞)
    学部4年生 佐藤 雅也
    ●北海道大学大学院情報科学院 学院長賞
    修士2年生 渡邉 優宇人
    博士3年生 柳 凜太郎
    ●令和5年度 電子情報通信学会北海道支部 学生奨励賞
    修士2年生 五箇 亮太
    修士2年生 渡部 航史
    皆さん、誠におめでとうございます!